
Kaluza without Klein: a quantitative ab initio model for particles

Abstract
Using a Kaluza-type of model, describing the laws of electromagnetism within the formalism of differential
geometry, provides a coherent, comprehensive and quantitative description of phenomena related to particles,
including a convergent series of quantized particle energies with limits given by the energy values of the
electron and the Higgs vacuum expectation value as well as the values for electroweak coupling constants.
The geometry of the solutions for spin 1/2 defines 6 lepton-like and 6 quark-like objects and allows to
calculate the fractional electric charges as well as the magnetic moments of baryons.
Electromagnetic and gravitational terms will  be linked by a series expansion,  the corresponding relation
suggests the existence of a cosmological constant in the correct order of magnitude.
The model can be expressed ab initio, necessary input parameters are the electromagnetic constants.

1 Kaluza theory
Theodor Kaluza in 1919 developed a unified field theory for electromagnetism (EM) and the general theory
of relativity (GR) [1] that is not suited to give properties related to particles, a problem addressed by Klein
[2] who introduced the idea of compactification and attempted to join the model with the emerging principles
of quantum mechanics. Therefore the theory is mainly known as Kaluza-Klein theory today. This version
became a progenitor of string theory. The original Kaluza model was developed further as well [3], Wesson
and  coworkers  elaborated  a  general  non-compactified  version  to  describe  phenomena  extending  from
particles to cosmological problems. The equations of 5D space-time may be separated in a 4D Einstein
tensor and metric terms representing mass and the cosmological constant, Λ. Particles may be described as
photon-like in 5D, traveling on time-like paths in 4D. This version is known as space-time-matter theory [4].
Both successor  theories  give general  relationships  rather  than providing  quantitative  results  for  specific
phenomena such as particle energy. 
The model described here does not attempt to give a complete solution for a 5D theory but to demonstrate
that Kaluza's ansatz provides  simple, parameter-free and quantitative solutions for particles as well. Basic
equations from the existing literature may be used, with one significant simplification: 
Kaluza discovered that Maxwell’s equations may be described within the formalism of GR. To get both these
and the Einstein field equations (EFE) he needed an additional dimension and had to insert the constant of
gravitation  in  his  metric. If  one  settles  for  electromagnetic  phenomena  as  first  approximation  the
gravitational constant is obsolete. This does not give a unification of EM and GR, however, is a suitable
ansatz to “unify” EM and particle physics. Gravitational terms can be recovered via a series expansion of the
electromagnetic equations.
Curvature of space-time based on an electromagnetic version of the field equations of GR will be strong
enough to localize a photon in a self-trapping kind of mechanism, yielding energy states in the range of the
particle zoo. Circular polarized light is part of conventional electromagnetic theory, in the following this
feature will  be treated equivalently with the terms angular momentum or spin as intrinsic property of a
photon and spin 1/2 will be a necessary boundary condition in the equations used. 
The basic proceeding will be as follows:
Kaluza’s equations for flat 5D-space may be arranged to give [4]
1) Einstein-like equations for space-time curved by electromagnetic and scalar fields,
2) Maxwell equations where the source depends on the scalar field,
3) a wave-like equation connecting the scalar Φ with the electromagnetic tensor.
To  match  the  units  of  the  EFE  without  any  additional  constants  requires  an  appropriate  unit  system.
Retaining SI units for length, time and energy the electromagnetic constants may be defined as:
c0

2  = (εc μc)-1 (1)
 with εc = (2.998E+8 [m²/Jm])-1 = (2.998E+8)-1 [J/m] 

μc = (2.998E+8 [Jm/s²])-1 = (2.998E+8)-1 [s2/Jm] .
From the Coulomb term b0 = e2/(4πε0) = ec

2 /(4πεc) = 2.307E-28 [Jm] follows for the square of the elementary
charge: ec

2 = 9.671E-36 [J2]. In the following ec
 = 3.110E-18 [J] and ec/(4πεc) = 7.419E-11 [m] may be used

as natural unit of energy and length. The constant G/c0
4 [m/J] in the field equations will be replaced by 1/εc:
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(8 π )G /c0
4      =>     ≈   1

εc
    (2)

giving:

Gαβ  = Rαβ  - 1
2

gαβ R  = 1
εc

T αβ     (3)

Solutions of 3) for Φ in a flat 5D-metric will be used as general ansatz in a 4D-metric. This is considered to
be a proof of concept, a more thorough ansatz has to be expected to incorporate angular momentum/spin into
the field equations appropriately. 
A solution for Φ is 
Φ ≈ (ρ0/r)2 exp(-(ρ/r)3) (4)

and may be seen as representing curvature of 4D space-time. Due to the derivation from a Kaluza ansatz
coefficient ρ/r is a function of the  electromagnetic potential, in the static approximation of this work the
electric potential ρ0/r = ec/(4πεcr). The only other parameter entering ρ will be a function of the fine-structure
constant 1, α, which enters the equations through the boundary condition spin ħ/2 and its relationship with the
values of the electric potential, elementary charge and electric constant. 
Assuming that a 2nd term in a series expansion of EM-terms represents gravitation and should not exceed the
EM-term, part of the α-terms included in ρ can be identified with the ratio of electron and Planck energy,  αPl:

ρe
3 ≈ (1.5)3σ0αPl ρ0

3  ≈ (1.5)3[( Γ (−1/3 )
α )

3]1.52α10

2 ( ec

4 πεc r )
3

           (ρe = coefficient of electron) (5)

The bold term corresponds to αPl. Integrals over a function of type (4) may be given as Euler integrals, which
give solutions in terms of Γ-functions, their lower integration limit, denoted σ 0 for the spherical symmetric
case with a 1st approximation given in brackets, may be obtained via the boundary condition spin ħ/2 (giving
σ0 = 1.810E+8 [-]). For calculation of particle energy in col. 5 of table 1 a fit of σ0 for and αPl according to
literature values are used. The term at the right side of (5) gives a first approximation for the σ0, αPl terms, a
more detailed calculation, given in the method section, is used in col.6, table 1.
Function Φ calculated for a flat 5D-metric will be used as general ansatz in a 4D-metric:

gµµ  = (ρ0

r )
2

exp(−(ρ
r )

3) ,   −(ρ0

r )
2

exp((ρ
r )

3) ,   − r 2 ,   − r2 sin2ϑ (6)

Solving for energy density and integrating gives the energy of the electron as:

W e = 4
9

Γ (+1 /3)

(σ0 αPl )1 /3  ec (7)

and values for other particles as a convergent series relative to the electron state:

Wn /We  ≈ 3 /2
α ^(1.5 /3n)

α1.5

σ 0
1/3

σ 1/3  = 3 /2Πk=0
n α^(-3/3k ) 

σ0
1 /3

σ1 /3         n = {1;2;..}         (8)

with σ0
1/3 ≈ Γ(-1/3)/α for spherical symmetry, σ1/3 ≈ (l(l+1)1/3σ0

1/3 for the next spherical harmonics, l = 1, σ1/3 =
2 Γ(-1/3)/3 for the maximum value of σ1/3.  Based on this, the model yields absolute particle energies  with
limits given by the energy values of the electron and the Higgs vacuum expectation value, see table 1. 

Equating  the  energy terms  for  a  point  charge  and a  photon,  hc0/λC,  modified  by  the  term Φ,  gives  an
approximation for the fine-structure constant. 

α−1  ≈ 4 π Γ (+1/3)Γ (−1/3) (9)

Since this can be traced back to the product of a point charge term times a complementary integral in N-
dimensions, one can obtain a single expression for both α and αweak, the weak coupling constant, giving in a
rest system:

1 The relation of the masses e, µ, π with α was noted first in 1952 by Nambu [5]. MacGregor calculated particle mass 
and constituent quark mass as multiples of α and related parameters [6].
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Table 1: Particle energies; col.2: radial, angular quantum number; col.4:  α-coefficient in Wn according to  (7)f;
col.5/6: ratio of calculated energy, Wcalc according to (7)f vs literature value, Wlit [7] – col.5 with σ0 from fit for JZ

=1/2 and αPl given by We/WPl of literature values, col.6:  σ0 and αPl given by a more detailed calculation in the
Methods section; col.7: angular momentum Jz [ħ]; Only states given in [7] as 4-star, characterized as „Existence
certain, properties at least fairly well explored‟, are included,  up to Σ'0 all states given in [7] are listed; blanks in
the table are discussed in chpt. 10 of the Methods section.

α N
−1  =  SN

Γ (+(N −2)/N )Γ (−(N−2)/ N)
(N−2)2     N = {3;4} (10)

Equation (10) allows to give  ρ and consequently particle energy in terms of  elementary charge, electric
constant and mathematical constants only (table 2). 

Table 2: Values of electroweak coupling constants 

2 Quaternion ansatz
The Kaluza model with spin 1/2 as boundary condition described above allows to calculate ab initio values
for  the  free  parameters  of  the  standard  model  of  particle  physics  (SM).  Reversing  the  main  focus,
emphasizing  angular  momentum  and  implicitly  assuming  curvature  of  space  as  necessary  boundary
condition  for  localization  allows  to  reproduce  the  fermion  particle  content  of  the  SM  and  to  explain
phenomena that are related to properties of quarks.
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n, l J

  0
0, 0 0.51 1.014 1.002 1/2
1, 0 105.66 1.008 0.996 1/2
1, 1 139.57 1.101 1.088 0

K 495 0
2, 0 547.86 1.002 0.990 0
2, 1 775.26 1.022 1.009 1
2, 1 782.65 1.012 1.000 1

K* 894 1
3, 0 938.27 1.011 0.999 1/2

n 3, 0 939.57 1.010 0.998 1/2
958 0

1019 1
4, 0 1115.68 1.020 1.008 1/2
5, 0 1192.62 1.014 1.002 1/2

Δ 1232.00 1.012 1.000 3/2
1318 1/2

3, 1 1383.70 0.989 0.977 3/2
4, 1 1672.45 0.982 0.970 3/2

N(1720) 5, 1 1720.00 1.014 1.002 3/2
1776.82 1.012 1.000 1/2

Higgs ∞,∞ 1.25 E+5 1.024 1.012 0
VEV ∞,∞ 2.46 E+5 1.042 1.030

Wn,Lit       
[MeV] 

α, σ-coefficients in Wn          

equ. (7)f
Wcalc/ Wlit 
σ0=fit, αPl=exp

Wcalc/ WLit  
Method sect.

≈ 1 E-7 
e+-  2/3 α-3

µ+-  α-3α-1

π+-  α-3α-1 [31/3] 

η 0  α-3α-1α-1/3

ρ0  (α-3α-1α-1/3) [31/3] 
ω0  (α-3α-1α-1/3) [31/3] 

p+-  α-3α-1α-1/3α-1/9

 α-3α-1α-1/3α-1/9

η'
Φ0

Λ0  α-3α-1α-1/3α-1/9α-1/27

Σ0  α-3α-1α-1/3α-1/9α-1/27α-1/81

∞, 0  α-9/2

Ξ
Σ*0  (α-3α-1α-1/3α-1/9) [31/3]  
Ω-  (α-3α-1α-1/3α-1/9α-1/27) [31/3]  

 (α-3α-1α-1/3α-1/9α-1/27α-1/81) [31/3] 
tau+- ∞, 1  (α-9/2) [31/3] 

 (α-9/2) [3/2 α-1] /2
 (α-9/2) [3/2 α-1] 

4D
3D 136.8

Dimension – 
space

coupling 
constant Value of inverse of coupling constant, αN

-1

α4 = αweak 2π2 Γ+1/2 Γ-1/2 /4  =  π3  = 31.0
α3 = α 4π Γ+1/3 Γ-1/3  = 4π Γ+1/3 Γ-1/3 =



A circular polarized photon with its intrinsic angular momentum interpreted as having its E- and B-vectors
rotating around a central axis of propagation will be transformed into an object that has the - still rotating -
E-vector constantly oriented to a fixed point 2, the origin of a local coordinate system. The vectors E, B and
C of  the  propagation  velocity  are  supposed  to  be  locally  orthogonal  and  subject  to  standard  Maxwell
equations. This has the following qualitative consequences:
1) Such a rotation is related to the group SO(3) (and SU(2) as important special case). A quaternion ansatz
will be used for modeling the respective rotations. 
2)  E-vector  constantly  oriented  to  a  fixed  point  implies  charge.  As  implicitly  assumed  above,  neutral
particles are supposed to exhibit nodes separating corresponding equal volume elements of reversed E-vector
orientation and opposite polarity.
3) A local coordinate system = rest system implies mass.
4) In case of any lateral extension of the E-field, for r -> 0 the overlap of a rotating E-vector implies rising
energy density, resulting in rising curvature of space-time according to GR or its modification as of equ. (3).
5) The orthogonal vectors E, B and C can be given in 2 different chiral states (left- right-handed).
6) As essentially electromagnetic waves such states are consistent with a “point-like” structure function on
the other hand imply a spatial distribution of energy density and angular momentum / spin.
For quantitative results 3 orthonormal vectors E, B, C, each described as imaginary part of a quaternion with
real part 0, will be subject to alternate, incremental rotations around the axes E, B and C. In the following
only solutions where one of the incremental angles of rotation has half the value of the other two will be
considered. This may serve as a primitive model for spin J=1/2. There are 3 possible solutions corresponding
to half the angular frequency for each of the components E, B, or C, respectively. The trajectory of the E-
vector encloses a  spherical  cone,  the spherical  cap of the cone encompasses a fraction of the area of a
hemisphere of 2/3, 1/3 and 1/3, respectively. Mirroring at the center of rotation gives the equivalent double
cone (blue in fig.1), the fractions of both caps in relation to the surface of the total sphere may be interpreted
to  give  partial  charges  of  2/3,  1/3  and  1/3  according  to  Gauss’ law.  It  is  suggestive  to  identify  such
components with uds-quarks. In the following the assignment (half-frequency-E-rotation, charge +2/3, U),
(half-B, charge -1/3, D), (half-C, charge -1/3, S) will be used. The magnetic moments of the uds-baryons will
be calculated from appropriate combinations of these UDS-objects in 3.2.
The E-vector might as well be interpreted to enclose the complement of the double cone of a 3D-ball (white
in fig.1), to be called a spherical wedge in the following. This gives the objects complement-U, complement-
D, complement-S with charges 1/3, 2/3, 2/3. These objects may be attributed to c, b, t-quarks 3. 

Fig.1: Trajectories of the E-vector, enclosing spherical cones and toroidal wedges

Such entities of (single) spherical cones and toroidal wedges may be used as elementary building blocks to
be combined to form more complex objects of still orthogonal E(t) and B(t) fields, pending on fitting phase /
angular momentum and chirality as well as interference of the fields itself. A mismatch in phase/ chirality
may result  in  nodal  planes and higher energy states.  In  the following it  will  be left  undecided if  more
complex compositions of such objects might be interpreted to represent time averages of propagating EBC-
vectors or a standing wave.
A combination of two cones to give a spherical double cone will always give a valid solution with any spin
or chirality and is considered to give approximate y1

0 solutions.
The simplest objects will result from combining an U, D or S-component with its complement of same phase
and chirality, which formally will reassemble the complete sphere. These objects may be attributed to the
charged and neutral leptons.  An electron might be considered e.g. as an (anti-U + (U-Complement = B))

2 This holds for B (and C) as well, i.e. for r < λC both E- and B-fields will be charge-like.
3 It may be expected that their more extended geometry might be less favourable in a combination for hadrons, leading 
to higher energy states.
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particle, however, unlike a B-meson with spin 1/2. While this is not possible with quarks, i.e. objects with
particle character, this gives the simplest state for an electromagnetic wave with the lowest energy.
Composite objects -  in particular  if composed of 3 UDS-components – may feature sufficient  spherical
symmetry to conform to the respective energy equation (8). 

3.2 Magnetic moments of baryons
A crucial test for the applicability of such an  ansatz is the calculation of magnetic moments. A combination
of 3 orthonormal UDS-components whose half-integer spin-components add up to yield the appropriate total
spin  Jz =  1/2  will  be  used.  The  calculated  moments  are  a  product  of  a  component  depending on  total
energy/mass expressed by a term for a current loop containing the Compton wavelength, and an average of
the B-field calculated with quaternions (B_avg). Table 3 gives the ratio of calculated and experimental values
[7]  4. Since λC may be calculated according to the methods given above these values are  ab initio as well,
however, for greater accuracy values of λC according to [7] are used. 

Table 3: Magnetic moments for UDS-Baryons  4; col.3: Compton wavelength [7]; col.4: magnetic moment for
current  loop;  col.5:  average  B-component  from quaternion  calc.;  col.6:  calculated  magnetic  moments;  col.7:
values from experiment [7]; col.8: ratio calculated / experiment value; col.9: ratio (calculated constituent quark
model, [7]) / experiment [7]) added for reference.

Minor systematic errors have to be expected in this model.  The ratio of magnetic moments for pairs of
particles from the same family gives:

Table 4: Ratio of particle magnetic moments of baryon pairs compared for calculated and experimental values [7]
(col.3: geometry only, B_avg; col.2 inc. exp. particle energy); col.4: values based on constituent quarks [7].

The solutions for nucleons, are distinguished by the exchangeability of U- and D-components,  as well as one
U  and  one  D-component  occupying  approximately  the  same  space  5,  indicating  a  particular  stable
configuration involving oppositely charged components.
The orthonormal EBC-vectors feature two possible chiral configurations, right-handed “R” and left-handed
“L”.  This  suggests  to  be  a  possible  source  for  a  factor  3  frequently  appearing  in  the  quantitative
interpretation of processes involving a quark-antiquark-pair.  While this is attributed to the 3 “colors” of
quarks in the SM, the same factor would result for any UDS-pair having the possibility to exist in triplet-like
states, “LL”, “RR” and 1/√2 (LR+RL) 6 (referring to an axial vector representing the EBC-configuration). 

4 Gravitation and cosmological constant
In this work the expression
b0 = G mPl

2 = G WPl
2 /c0

4               (11)

4 To allow for comparison with tabulated values of M in units of [Am2] the calculations in this chapter use e [C] not ec  
[J], conversion factor: [m2C/s ] /[m2 J/s ] = e/ec = 1/19.4 [C/J]. Only absolute values will be considered.
5 Time average! All E,B-components involved are orthogonal at any given point in time. Additional aspects concerning 
nucleons see method section chpt. 11.
6 With a singlet state corresponding to destructive interference; Particles and antiparticles are supposed to have opposite
chirality, however, within this model there exists no fundamental reason that prevents any combination for charge / 
spin / chirality.
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B_Avg
UUD 1.32E-15 3.17E-26 0.440 1.39E-26 1.41E-26 0.988 -

n DDU 1.32E-15 3.17E-26 0.301 9.55E-27 9.66E-27 0.988 0.973*
UDS 1.10E-15 2.64E-26 0.111 2.94E-27 3.10E-27 0.949 -
UUS 1.04E-15 2.50E-26 0.497 1.24E-26 1.24E-26 1.002 1.090
DDS 1.04E-15 2.50E-26 0.234 5.83E-27 5.86E-27 0.994 0.897
USS 9.43E-16 2.26E-26 0.267 6.05E-27 6.31E-27 0.958 1.152
DSS 9.38E-16 2.25E-26 0.134 3.01E-27 3.06E-27 0.983 0.784

λC e c0 *λC /2
|M|Calc =  
ec0λC Bavg/2 |M|Exp[Am2]

|M|Calc/  
|M|Exp

|M|Calc/|M|Exp 
Const. quark

p+-

Λ0

Σ+

Σ-

Ξ0

Ξ-

|M|Calc (Col.6) B_avg (Col.5) Const. Quarks
M(p/n)_Calc/M(p/n)_Exp 0.999809 1.001187 0.973*

1.007813 1.001111 1.115
0.974652 0.969601 1.470

M(Σ+/Σ-)_Calc/M(Σ+/Σ-)_Exp
M(Ξ0/Ξ-)_Calc/M(Ξ0/Ξ-)_Exp



is used as definition for Planck terms. The constant G may be given as:

G  ≈ 
α Pl

2 c 0
4 b0

W e
2 (12)

Since We may be expressed as function of π, Γ+1/3, Γ-1/3 and ec only, G may be expressed as a coefficient based
on electromagnetic constants, G ≈ 2/3 c0

4α24/(4πεc).
Terms for gravitation may be recovered via a series expansion of the exponential in (4), giving for the first
two terms of energy density:

w  ≈ 
εc ρ0

2

r4 e v  ≈ εc E2[1 - σα Pl( ec

4πεc r )
3 ]  (13)

which is a very good approximation for r >  αλC.  The 1st term is the classical Coulomb term for energy
density.  The 2nd term contains  by definition the ratio  between Coulomb and gravitational  terms for  one
particle, αPl. To turn this into the exact Coulomb / gravitation relationship requires that r in the exponential
may not be considered to be a free parameter for r > λC, the limit of a real solution 7, and it has to be assumed
that spin does not play a role for r >> λC. This would give the general expression for a series expansion as:

Coulomb-term (1 - αPl). 
Equivalent terms for potentials or the vacuum (methods, chpt.3) may be constructed as well.
A metric of type (6) offers the possibility to produce additional minor terms not relevant for particle energy.
G00  will  in  general  contain  terms  such as  ρn

3/r5 or  ρn
6/r8 with  all  r  originating  from derivatives  of  the

exponential only. Using r = ec/(4πεc) as upper bound of r, as suggested above will yield approximate values
in the order of magnitude of critical, vacuum density, ρc, ρvac and of Λ: 

Φ ' '
Φ

 ≈ ρ3

r5  ≈ 
αPl

(ec/(4 π ε c))
5 ( ec

4 π εc
)
3

 =  αPl( 4 π εc

ec
)
2

= 0.089 [m-2] (14)

Multiplied by εc this gives an energy density of 2.97E-10 [J/m3].
Multiplied by the conversion factor for the electromagnetic and gravitational equations, equ. (2), (14) gives 
as estimate for Λ:

αPl
(4 π )2 ε c

3

ec
2

8πG
c0

4  ≈ 6.17E-53 [m-2]    (15)

5 Relationship with concepts of quantum mechanics
It is a common thought that the theory of general relativity (GR) has to be unified with quantum mechanics
(QM). The model presented here suggests that the ansatz of Kaluza, in particular in combination with the
boundary condition spin 1/2,  is  sufficient  to give an excellent  model  for particles,  bypassing QM in 1 st

approximation. The major deviation from conventional GR is dropping the constant of gravitation in the field
equations, a minor thing from a mathematical point of view. The resulting objects of interest are waves only,
which naturally fits basic concepts of QM. Other general features of quantum mechanics that emerge from
such  an  ansatz  include  quantization  of  energy or  the  pivotal  constant  of  quantum mechanics,  Planck’s
constant,  h,  that  may be  derived  from the  electromagnetic  constants  and  geometry  as  expressed  in  the
derivation of α. 
While the integrals of the Kaluza ansatz allow to calculate the free parameters of the SM and to remove some
values from the set of fundamental constants: 
electromagnetic constants, h, G, α, αweak, energies of elementary particles  =>  electromagnetic constants,
the quaternion ansatz reproduces the content of “elementary” fermions of the SM. The model can explain the
number of “elementary” objects, based essentially on the possibility to have 3 orthogonal vectors in 3D-
space, and allows to calculate their (partial) charges and magnetic moments. Leptons are an integral part of
the particle classification scheme. 

7 The existence of an integration limit implies that the exponential in (4) has to be an approximation of e.g. a damped 
oscillation-like solution.
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There are several features of the model indicating a close relationship with electroweak theory: chirality,
SO(3), SU(2) symmetry of the individual particles as well as a rotational symmetry between particles 8, the
energy of the Higgs boson /VEV as upper limit for particle energy  9 and last not least the possibility to
calculate the IR-limits of the electroweak coupling constants. On the other hand, there seems to be no deeper
connection with the concepts of QCD, such as color or gluons. Properties such as confinement or the need
for adhering to the Pauli principle in e.g. the Δ++ are obsolete from the outset for an object that is basically a
(5D-) electromagnetic wave. The development of the SM from constituent quarks towards QCD, based on
valence and sea quarks plus gluons, was in part required by the limitations in explaining some scattering
experiments with 3 point-like objects only. The waves of this model are consistent with a point like structure
function and still feature spatial extension from the outset.
QED terms are considered to be a necessary amendment for this model. The deviation of calculated results
from the experimental values is typically in the range 0.01 - 0.001, consistent with the non-linearity of the
Γ-functions and a variation of input parameters related to elementary charge in an order of magnitude of
QED corrections.
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