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Abstract
Using a Kaluza-type of model,  describing the laws of electromagnetism within the formalism of curved
4D-/flat  5D-space-time,  provides a  coherent,  comprehensive and quantitative  description  of  phenomena
related to particles,  including a convergent series of quantized particle energies, with limits given by the
energy values  of  the  electron and the Higgs vacuum expectation value,  and the values  for  electroweak
coupling constants. The geometry of the solutions for spin 1/2 defines 6 lepton-like and 6 quark-like objects
and allows to calculate their fractional electric charges as well as magnetic moments of baryons.
A series expansion yields electromagnetic terms, gravitational terms and a de Sitter background that provides
a link between the cosmological constant and the a0 parameter of MOND/BTFR, giving both values in the
correct order of magnitude.
The model can be expressed ab initio, necessary input parameters are the electromagnetic constants.

1 Introduction 
Theodor Kaluza in 1919 developed a unified theory of gravitation and electromagnetism that produced the
formalism for  the  field  equations  of  the  general  theory  of  relativity  (GR)  and  Maxwell's  equations  of
electromagnetism (EM) thus unifying the major forces known at his time. His 5-dimensional model [1] is not
suited to give properties related to particles, a problem addressed by Oskar Klein [2] who introduced the idea
of compactified extra dimensions and attempted to join the model with the emerging principles of quantum
mechanics. Therefore the theory is mainly known as Kaluza-Klein theory today and in this version became a
progenitor of string theory. The work presented here does not follow this path but rather the extension of
Kaluza’s original work put forth among others by Wesson and coworkers [3], [4] in a version known as
space-time-matter theory. In this concept one makes use of Campbells theorem which states that any curved
N-D space can be embedded at least locally in a flat (N+1)-D-(i.e. Minkowski-) space. Using either 4D-
curved or 5D-flat space-time is merely a mathematical choice, there is  nothing “extra” in terms of physics.
This is analog to the approach for a 4D de Sitter space (dS4) which represents a  submanifold of the 5D-
space-time discussed in the Kaluza context and  provides a useful link between particle and cosmological
phenomena.
A crucial simplification of Kaluza’s original ansatz concerns the constant of gravitation, which he introduced
ad hoc in his metric as a coefficient to render the EM potentials dimensionless and get the field equations of
GR with the appropriate constant. This is a rather unfitting combination and in this work G will not be part of
the metric. Gravitation can be recovered quantitatively by a series expansion and G can be expressed as an
EM-term.
Curvature of space-time based on an electromagnetic version of the field equations of GR will be strong
enough to localize a photon in a self-trapping kind of mechanism and in combination with a boundary
condition,  spin of a fermion,  will  yield accurate energy states in the range of the particle zoo.  Circular
polarized light is part of conventional electromagnetic theory, in the following such a feature will be treated
equivalently with the terms angular momentum or spin  1 as intrinsic property of particles.  Spin will be a
necessary boundary condition to determine an integration limit for the equations used. Since at this point
there is no obvious ansatz for integrating spin into the metric of this model, any metric discussed in the
following should be considered as an approximation only 2. 
The basic proceeding will be as follows:
Following [4] Kaluza’s equations will be elaborated for flat 5D-space-time. They may be arranged to give
(cf. [4], chapter 6.6):
1) Einstein-like equations for space-time curved by electromagnetic and scalar fields (equ. (3)),
2) Maxwell equations where the source depends on the scalar field,
3) a wave-like equation connecting the scalar Φ with the electromagnetic tensor (equ. (4)).

1 “Spin” will be used as a generic term not necessarily implying specific features of the quantum mechanical term.
2 dS4 may cover some aspects of spin, but does not give a direct relationship to Sz=1/2.
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Solutions of 3) for Φ in a flat 5D-metric will be used in a general ansatz for a metric. Due to 3) Φ includes a
term with an exponential  function of  the  EM-potentials, in  the  approximation of  this  work  the  electric
potential, Ael. The only other coefficient entering the equations will be  ħ of the boundary condition spin.
These coefficients are related by the fine-structure constant,  α, which consequently will play an important
role in this work, and Φ can in general be given as function of Ael and α, see chpt. 2.4. The α-terms in the
exponential part of Φ will be given as two coefficients: 
- Coefficient σ represents angular momentum of particle states and is the decisive parameter for providing an
integration limit/length parameter 3.
- Coefficient ß  4, serves as a ground state coefficient for particles and together with σ determines the particle
energy spectrum. It will be the only remaining parameter beyond the particle radius and as such plays an
important role for particle interaction.
Both  σ and ß can not only be referred to well known experimental values but also approximately derived
from fundamental considerations (see e.g. [A4]) or they can be converted into each other (chpt 2.4.4.1).
Therefore,  all  results  of  this  model  are considered to be calculable  ab initio,  using electromagnetic and
mathematical constants only.
The exponential function of Φ is crucial in obtaining the following results:
- It allows to integrate over r-2 of a point charge and yields an energy in the range expected for neutrinos
when inserting σ only and a set of converging series of particle energies as function of α 5 with limits given
by the energy of the electron and the Higgs vacuum expectation value (VEV) when inserting both σ and ß.
- Series expansion of the exponential will leave only the ground state coefficient ß as particle related
  parameter in higher order terms.

- Within the accuracy of the calculations coefficient ß is identical with the ratio of the electron and Planck
energy, (cf. chpt. 3.1) and the 2nd order term can be identified with gravitation, as expectable.
-  The 3rd order term can be identified with deviations from basic gravitation and yields values for the
cosmological constant, Λ0, the Baryonic-Tully-Fisher-Relation (BTFR) of galaxy rotation curves and the
related coefficient  a0,  discussed extensively in the context  of  MOND-models,  in the correct  order of
magnitude. This may be interpreted in terms of a de Sitter space (cf. chpt. 3.3).

Focusing on the angular momentum aspects of the model, in chpt. 4 the rotation of a set of orthogonal E, B,
C-vectors, attributed to the electromagnetic fields and the propagation with the speed of light, C, will be
modelled via quaternions. This gives 3 possible solutions for spin 1/2 defining 6 distinct geometric objects
with partial charges of 1/3 and 2/3. Combining 2 complementary solutions gives 6 lepton-like entities as the
simplest, node-free case, combining 3 appropriate solutions allows to calculate magnetic moments of baryons.
Typical accuracy of calculations is in the order of 0.0001. However, ambiguities involving the incomplete
gamma-functions may be in the range of a few percent (see e.g. [A3.4]). The deviation of calculated results
from the experimental particle values is typically in the range of 0.01 - 0.001 and might still be consistent
with  a  variation  of  input  parameters  related  to  elementary  charge  in  an  order  of  magnitude  of  QED
corrections (cf. chpt. 2.5.4). 
To focus on the more fundamental relationships some minor aspects of the model are exiled to an appendix,
related topics will be marked as [A]. 

1.1 System of natural units
In the following a unit system based on SI for units of mechanics but with modified EM-units, indicated by
subscript c, will be used that is particularly suited for simplifying the relevant expressions:
c0

2  = (εc μc)-1 (1)
 with εc = (2.998E+8 [m²/Jm])-1 = (2.998E+8)-1 [J/m] 

μc = (2.998E+8 [Jm/s²])-1 = (2.998E+8)-1 [s2/Jm].
From the Coulomb term b0 = e2/(4πε0) = ec

2 /(4πεc) = 2.307E-28 [Jm] follows for the square of the elementary
charge: ec

2 = 9.671E-36 [J2]. In the following ec
 = 3.110E-18 [J] and rl = ec/(4πεc) = 7.419E-11 [m] may be

used as natural unit of energy and length 6. 
3 It is assumed that in general particle states feature SZ = 1/2 or are composed of spin 1/2 components.
4 Denoted αPl in earlier versions of this work.
5 The relation of the masses e, µ, π with α was noted first in 1952 by Nambu [5]. MacGregor calculated particle mass 
and constituent quark mass as multiples of α and related parameters [6].
6 This is the only unique choice for a unit system which gives dimensionless units for Ael in the metric and would be the
default choice in a system of natural units. In SI proper a constant k=0.00515[C/J] would be required for ke/(4πε) [m].
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2 Calculation of energies
2.1 Kaluza theory
Kaluza theory is an extension of general relativity to 5D-space-time with a metric given as  [cf. 4, equ. 2.2]:

g AB  = [(gαβ−κ2Φ2 Aα Aβ ) −κ Φ2 Aα

−κ Φ2 A β −Φ2 ]     (2)

In (2) roman letters correspond to 5D, Greek letters to 4D. κ corresponds to a general constant appropriate
for an EM unit system that turns κAα into a dimensionless quantity. To get the field equations of GR Kaluza
assigns k to a gravitational term. Assuming 5D space-time to be flat, i.e. GAB = 0, gives for the 4D-part of the
field equations [cf. 4, equ. 2.3]:

Gαβ  = κ2 Φ2

2
T αβ

EM  - 1
Φ ( ∇α(∂α Φ) - gαβ □ Φ)     (3)

From R44 = 0 follows:

□ Φ  = − κ2 Φ3

4
Fαβ Fαβ     (4)

2.2 Modification of Kaluza’s metric
In this work the focus will be on EM-terms only, i.e. gαß of (2) is set to zero. Moreover, only an electrostatic
approximation, i.e. the electric potential, Ael = ec/(4πεcr) = ρ0/r [-] will be considered. In the following ρ0 will
refer  to  the  Ael-term,  while  dropping subscript  0  will  indicate  a  general  solution  where ρ may contain
additional terms. 
This is an approximation not only in neglecting contributions of the magnetic  potentials but also in not
considering spin. It is therefore not possible to give an exact metric for the problems considered here. [A2]
introduces 2 versions for illustrative purposes. The following approximations will be used.
Only derivatives with respect to r of a spherical symmetric coordinate system will be considered. 
According to Campbell’s theorem [4] a flat (N+1)-D metric is mathematically equivalent to a curved N-D
metric 7 so both approaches are compatible in principle. Solutions of (4) for an approximate Φ of a flat 5D-
metric will be used as general ansatz in a 4D-metric. In 

 ΦN  ≈ ( ρ
r )

N−1
exp(-( ρ

r )
N
/2) (5)

the term of highest order of exponential N, given by Φ'' ~ ρ3N-1 /r3N+1, may be interpreted to provide terms for 
Ael(r) = ec/(4πεcr ) = ρ0/r ~ ρ/r (6)

see [A1]. The significance of (5) lies in providing the relationship of exponential and pre-exponential terms
and first of all in the requirement to contain powers of (ρ0/r) in the exponent of ΦN. 
The difference in order of magnitude between ρ0 and ρ, to be elaborated on below, results in the leading term
for particle energy being due to the Christoffel symbols of the angular coordinates 8, yielding a solution for
particle energy that is essentially independent from minor details of the metric, including the use of either a
4D- or a 5D-metric.
Concerning dimensions and unit systems:
Since E has to be the derivative of a unitless κAel, (κE)2 will have appropriate units for T00 (with chpt. 1.1:
E2[1/m2]). An expression with energy density, w, in T00 would require an expansion with some appropriate
coefficient for an electric constant, ε, turning the square of the electric field into energy density,  (εκ2E2),
which in turn requires ε to cancel in T00: T00 = 1/ε (εκ2E2) = 1/ε w.
When equating G00 with T00 the G-term in the conventional field equation will be replaced by 1/ε, giving

(8 π )G /c0
4      =>     ≈   1 /ε     (7)

in

Gαβ  = Rαβ  - 1
2

gαβ R  = −  1
ε

T αβ     (8)

7 At least locally, however, classic GR is a local theory as well.
8 Giving a “-1” component in the Ricci-tensor; This is consistent with curvature being due to the lateral extension of the
E-vector in the quaternion ansatz of chpt. 4;
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The relation between the gravitational and the EM scale will be given by a numerical factor of 
8 πεcG /c0

4  = 6.927E-52  = 2γ#
2  = 2  ⋅(1.861 E−26)2  (9)

2.3 Point charge energy
A broad class of metrics will give (10) as solution for G00 (cf.[A2]):
G00 = - ρ0

2/r4 exp(-(ρ/r)3) = w/εc (10)
The exponential of function Φ allows to integrate the electric field of the point charge. The volume integral
over the energy density of (10) gives the energy of particle n according to:

W n  = εc ρ0
2  ∫

0

rn

exp(−(ρn/r)
3)r−4  d3 r  = 4 π εc ρ0

2  ∫
0

rn

exp(−(ρn/ r)3)r−2  dr (11)

Solutions for integrals over exp(-(ρ/r)3) times some function of r can be given by:

∫
0

r n

exp(−(ρn /r)
N )r−(m+1)dr  = Γ (m /N ,(ρn/rn)

N )  
ρn
−m

N
  =  ∫

(ρn /rn)
N

∞

t
m
N

 −1
e−t dt  

ρn
−m

N
     (12)

in this work used for N = {3; 4}, m = {-2; -1; 0; +1;+2}. The term Γ(m/N, (ρn/rn)N) denotes the upper
incomplete gamma function, given by the Euler integral of the second kind 9. In the range of values relevant
in this work, for m/N ≥ 1 the complete gamma function Γm/N can be a sufficient approximation, for m/N ≤ 0
the integrals have to be calculated numerically, requiring an integration limit, see 2.4. 
Equation (11)f will give: 

W n, elstat  = 4 π εc ρ0
2  ∫

0

rn

exp(−(ρn/r)
3)r−2  dr =  b0 Γ(+1/3, (ρn/rn)3) ρn

-1/3 ≈  b0 Γ+1/3 ρn
-1/3    (13)

Particles  are  supposed  to  be  electromagnetic  objects  possessing  photon-like  properties,  thus  it  will  be
assumed that particle energy, Wn, has equal contributions of electric and magnetic energy, i.e.:
Wn = Wn,elstat + Wn,mag  = 2Wn,elstat  ≈  2 b0 Γ+1/3 ρn

-1/3                (14)

2.4  Integration limits, spin, parameters in ρ (σ, ß)
2.4.1 Integration limits
Apart from the electrostatic potential according to chpt. 2.2 two additional coefficients will be part of ρ that
can be derived from the integration limits obtained by setting a specific value for spin/angular momentum as
boundary condition. The integral limits required for integrals of (12) are either a radius rn for integrals over
exp(-(ρn/r)3) or (ρn/rn)3 for the Euler integrals. 

2.4.2 σ, SZ = 1/2 [ħ]
The integral limit for the Euler integral will be expressed via a constant defined as 8/σ  10: 
(ρn/rn)3 = 8/σ (15)

whose value may be derived from the condition for the z-component of angular momentum Sz = 1/2 [ħ]. A
simple relation with angular momentum Sz for spherical symmetric states will be given by applying a semi-
classical approach:

S z  = r2 x p (r 1)  = r2 W n (r 1)/c0 ≡ 1/2 [ħ] (16)
Using term 2b0 of equ. (14) as constant factor and integrating over a circular path of radius |r 2| = |r1|, equation
(12) will give for m = 0:

S z=∫
0

rn

∫
0

2 π

S z(r ,φ)dφ dr = 4 π
b0

c0
 ∫

0

rn

e
−( ρ n

r )
3

r−1dr =4 π αħ∫
0

rn

e
−( ρn

r )
3

= 4 π
3

αħ ∫
8 /σ 0

∞

t-1 e -t dt

 = 4 π
3

αħ Γ (0 ,(ρn/rn)
3)  ≡ [ħ]

2

(17)

9 Euler integrals yield positive values, the sign convention of Γ-functions gives negative values for negative arguments. 
Abbreviations such as Γ-1/3  for |Γ(-1/3)| will be used; 
10 Chosen to give coefficient σ as component in the argument of the exponential of Φ according to [A3.1]. 

4 TOE260130



To obtain Sz = 1/2 [ħ] the integral over exp(-(ρn/r)3)/r dr of (17), has to yield α-1/8π.

∫
0

rn

exp(−( ρn /r)
3)r−1 dr  = 1 /3 ∫

8/σ0

∞

t-1 e-t dt  ≡  α−1

8 π
 ≈ 5.45  (18)

Relation (18) may be used for a numerical calculation of the integration limit, 8/σ0 (assumed to represent
spherical symmetry), σ0 = 1.810E+8 [-]. 
Assuming the coefficient Γ-1/3/3 according to (12), (25) has to be part of the expression for σ0 this results in
an approximation for σ0 as:
σ0 ≈ 8 (1.524 α-1 Γ-1/3 /3)3 ≈ 8 (1.5 α-1 Γ-1/3 /3)3   (19)

The main contribution in form of an α-term has to be expected 11, some details, including the residual factor
of 1.525 from the fit (usually approximated as 1.5 in the following), are discussed in  [A4.1]).
The minimal possible value for σ, given by the mathematical constants in (19)
σmin = 8(Γ-1/3/3)3                                (20)

leaves a term σ0/σmin as variable part in σ to consider non-spherical symmetric states, cf. chpt. 2.5.3:
(σ0 /σ min)

1/3  = α lim  ≈ 1.524 α−1  ≈ 1.5α−1 (21)

2.4.3 Particle “radius”, r
In the following a term for length expressed via the Euler integral of (12) will be introduced for a general
length rx: 

rx = ∫
0

rx

e
−( ρn

r )
3

dr  = ρn /3 ∫
(ρn/ rx)

3

∞

t-4/3 e-t dt ≈ Γ(-1/3, (ρn/rx)3)  ρn/3 (22)

In the limit (ρn/rx)N -> 0

Γ(-1/N, (ρx/rx)N) = ∫
(ρ x/rx)

N

∞

t−(1/N+1)e−t dt ≈ N (ρx/rx)-1 = N σx
1/3/2    (23)

holds (last term using (15)). For the case σx = σ0 and N=3:

rn ≈  3/2 σ0
1/3 ρn/3 = σ0

1/3/2 ρn (24)

Considering term 2/3Γ-1/3 has to be part of σ0 would give for the mathematical coefficients involved in rn of (24)

rx ~ 2/3 Γ-1/3 /2 = Γ-1/3 /3 (25)

as the limit of the Γ-term for length.
The 3rd term of equation (23) inserted in the right side of (22) gives back rx, however, the relations of (22)f
may be seen as expressing rx in terms useful for this model, i.e. ρn, σ0 and Γ-functions. 
The values calculated with relation (23) will be related to the Compton wavelength, λCn = hc0/Wn, by a factor
√3 (using (14) for Wn and (19), (24) for rn plus (78)) 12:
 λC,n = 3ρnhc0/(2b0Γ+1/3) = 3π α-1ρn/Γ+1/3;                             rn ≈ σ0

1/3/2ρn ≈ α-1 Γ-1/3 ρn/2   
 =>   λC,n/rn ≈ 6π/(Γ+1/3Γ-1/3) = 6π/(2π√3) = 30.5

           
(26)

A value for re calculated with these equations and σ0 of 2.4.2 is not in agreement with a numerical calculation
of re with boundary condition Sz = 1/2 [ħ] unless σ0 and ß (for charged particles, as discussed below) are part
of the argument of the exponential of Φ  13:
ρ3 ≈ σ0ß ρ0

3 (27)
i.e. in an expression such as (24) the σ-term has to be considered twice, giving rn ~ σ2/3.

2.4.4. Other values for integration limits, S = √3/2 [ħ],  S = 1 [ħ]  
For any given  ρ in  the  exponential  a  unique corresponding integration limit,  rn  /σn is  defined  via  (12).
However,  there  will  be  other  relevant  length/σ-parameters  that  may be defined by alternative boundary
11 In 0th approximation: using the term for energy (14) and length (22)f requires σ1/3 to be of order of the inverse fine-
structure constant α-1: 1/c0∫w(r) dr * ∫dr ≈ b0/(c0ρn) (σ1/3ρn) ≡  ħ/2   =>   σ1/3 ≈ α-1. 
12 Coefficient √3 of S/SZ is not reflected in the length parameter rl since equations such as (17), (22)f are non-linear.
13 A more complex exponential e.g. the discriminant form of [A3.1] would require σ to be part of the exponent as well.
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conditions 14. 
Next to the boundary condition SZ = 1/2[ħ], assumed to represent restrictions for spin due to the (average)
fields of a particle state, S = √3/2[ħ] will mark an absolute limit for a particle state and S = 1[ħ] will mark a
characteristic length beyond a particle state.

2.4.4.1 ß, S = √3/2 [ħ]
For particles associated with charge (or partial charges) a coefficient in addition to σ will be needed. A rough
estimation  may  be  obtained  from  the  condition  that  energy/length  of  a  charged  particle  has  to  be
higher/smaller than the value given by a pure electrostatic term. Since rl according to (19), (24), (27) will be
proportional to α-2 the term in the exponential has to be: ß < α6  15. 
Coefficient ß may be calculated directly from the condition that at a particular length parameter the terms in
the expression for length according to chpt. 2.4.3 will cancel, i.e. the σ/length-terms which are larger than 1
will cancel ß < 1 to give rl = ρ0 = ec/(4πεc). This value may be interpreted as transition from a particle state to
a point charge state and will be identified with the maximum possible value for a spin state of a fermion, S =
√3/2[ħ]. 

r x  = r e
rl

re
 ≈ (1.53 σ 0

2 ß ρ0
3 )1/3

/2(r l

r e
)  ≈ ρ0  = r l   (28)

The ratio of rl/re can be taken e.g. from rl/re= √3ec/(4πεcλC,e), a numerical calculation for rl [A9], etc. to give: 

ß '  ≈ 8 (1.53 σ 0
2 )−1(re

rl
)

3

 ≈ 8 (1.53 σ0
2 )−1(4 πεc λC ,e

30.5 ec
)

3

 = 4.870E-22     16 (29)

2.4.4.2  S = 1 [ħ]
For  the  series  expansion  discussed  in  the  next  chapter  the  approach  of  2.4.4.1  gives  a  sufficient
approximation. However, to cancel the minor terms of σlim the exact relation would require a limit of 
 rll = 2/3 Γ-1/3 ec/(4πεc)  =2/3 Γ-1/3 rl  (30)

and absence of the extra factor of the electron (≈1.5, see 2.5.1f)  in the exponential. The corresponding value
of spin will be S = 1[ħ], cf. [A9]. 

Fig.  1:  characteristic  lengths  in  relation  to  the
electron; red line: 1/r2; green dots: exponential of
Φ; dark blue: W(r), light blue: W(r,φ,ϑ); orange:
de Sitter radius RdS≙5D, r3D,dS,e≙3D, see chpt. 3.3.

2.5 Particle energy
2.5.1 Lower limit of energy
According to (27) of chpt. 2.4.3 σ0 will be part of the exponential. Calculating energy according to ρ3 = σ0ρ0

3

and (14) will  give W in the order of magnitude of 0.1 eV, a value in the estimated energy range for a
neutrino, see tab.1. 
Charge will require the additional coefficient ß < 1, as derived in 2.4.4.1. With (14) and (27) one gets for the
energy of a ground state W ≈ 1.5 We. Factor (3/2)3 in the exponential of Φ or its inverse, 2/3 in the energy
expression needed for the electron has up to now no satisfactory explanation 17.
14  For corresponding calculations the original coefficients σ0ßρ0

3 may be used in numerical calculations as shown in 
[A9] or in variations of the exponential as e.g. in (70). Alternatively the σ-value may be adapted accordingly.
15 The relationship between a photon-like object and a point charge object involves α, suggesting a photon-like state to 
differ by a factor of α from a pure point charge state and to use a ground state coefficient ß0 ≈ α9.  
16 In the calculations below ß of (38) will be used; ß’ = 0.994 ß 
17 Factor ~ 1.5 is discussed in [A3.2]. A dependence of interconnected particle sub-states, such as the spin-relation of 
[A3.5] may allow a deviation in a term that has its boundary not defined by the next sub-state but by free space.
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W
(r

), 
ex

p(
-(ρ

/r
)³)

, 1
/r

²

RdS,e 

ρe 

 λC,e = √3re

rl = ec/(4πεc) 
 ≈2/3Γ-1/3 ec/(4πεc)

r3D,dS,e 



2.5.2 Quantization with powers of 1/3n over α
Most relations given here are valid for any particle energy which should be expected as there is a continuous
spectrum of energies according to special relativity. However, a particular set of energies may be identified
by relaxing the condition of orthogonality of different states according to quantum mechanics to requiring
different states to be expressible in simple terms of a ground state coefficient in the exponent of Φ and not to
exhibit any dependence on intermediary states 18. 
In chpt. 3.1 a motivation will be given to split ß into a part supposed to represent spherical symmetric states,
α9 times the irregular coefficient of the electron, 1.53, and a part representing contributions of non-spherical
symmetric states, represented by αlim of (21).

1.53 α9

2α lim
 ≈ 1.52 α 10/2  ≈ 4.8 E -22  = ß (31)

The α9 part of ß will take the role of the ground state coefficient to give the following partial product:

Wn /We  ≈ 3 /2 α ^(1.5 /3n)
α1.5  ≈  3 /2Πk=1

n α^(-3/3k ) = 3/2α(n)           n = {1;2;..}      19 (32)

With (14) this gives (term for ß in bold, 1.5δ = extra coefficient for the electron only):

Wn ≈ 2 b0 Γ+1/3/3 ρn
-1 ≈ 2 b0 Γ+1/3/3 [(1.53)δ  σ0 αlim

-1/2 1.53 α9 α4.5/α^(4.5/3n)  (ec/(4πεc))3]-1    n = {1;2;..}   (33)

2.5.3 Non-spherical symmetric states
Assuming the angular  part  to  be related to  spherical  harmonics and exhibiting the corresponding nodes
would give the analog of an atomic p-state for the 1 st angular state, y1

0. With the additional assumption that
Wn,l ~ 1/rn,l ~ 1/Vn,l

1/3 ~ (2l+1)1/3 (Vn,l = volume) is applicable for non-spherically symmetric states this would
give W1

0/W0
0 = 31/3  = 1.44 and σ1/3 = 3-1/3  σ0

1/3  20. The quaternion model of chpt. 4.1 supports that a y1
0-like

symmetry for particle states has to be considered and a second partial product series of energies in addition
to (32) corresponding to these values approximately fits the data, see tab. 1 21. 
A change in angular momentum has to be expected for a transition from spherical symmetric states, y0

0, to y1
0

which is actually observed with ΔJ = ± 1 except for the pair µ/π with Δ J = 1/2. 
With σylm

1/3 = {2Γ-1/3/3 1.5/α (for y0
0);  3-1/32Γ-1/3/3 1.5/α (for y1

0); 2Γ-1/3/3 (for maximum)} energy relative to
the electron state may be given as:

Wn /We  ≈ 3 /2
α ^(1.5 /3n)

α1.5

σ 0
1/3

σ ylm
1/3  = 3/2Π k=1

n α^(-3/3k ) 
σ0

1 /3

σ ylm
1/3         n = {1;2;..}         (34)

According to αlim the maximum additional contribution relative to a spherical symmetric state would be:
ΔWmax

 ≈ 3/2 α-1 . (35)
resulting in a total maximum of energy of Wmax,total ≈ We 9/4 α-2.5 = 4.05E-8 [J] (= 1.028 Higgs vacuum
expectation value, VEV = 246GeV = 3.941E-8 [J] [7]) 22.

2.5.4 Results of energy calculation
Table 1 presents the results of the energy calculation according to (14), (33) for y0

0 (bold), y1
0. Only states

given in [7] as 4-star, characterized as „Existence certain, properties at least fairly well explored‟, are included,
up to Σ'0 all such states given in [7] are listed. Coefficients given in col. 4 refer to  (32)ff starting with the
electron coefficient in We, including its extra term set exactly to 2/3. Exponents of -9/2 for Δ and tau are
equal to the limit of the partial product of α(n), including the electron coefficient. 
Col. 5 gives energy calculated with σ0 according to the value of the fit for SZ =1/2 of 2.4.2 and ß given by
We/WPl, (38), according to the experimental value of the electron and definition (36) for Planck energy. 

18  cf. W n
2  ~ (α0

1 /3α0
1/ 9 .... α0

1/(3 ^(n-1)) α0
1/ (3^n ))  / (α0

1 α0
1/ 3 α0

1/ 9 .... α0
1 /(3 ^(n-1) ))  = α0

1 /(3 ^n)/ α 0  , cf. [A3.5] as well;
19 A supposed neutrino state according to 2.5.1 would roughly fit such a 3rd power partial product as well: 
Wn/Wv ≈ Πn

k=0   α^(-3/3k) n={0;1;..}.
20 Allocating all aspects related to angular momentum to some σ-term;
21 Considerations such as given in [A7] may give some indication why a 1:1 correspondence between y1

0-like states 
and mesons should not be expected.
22 Factor 1.042 with σ0 of 2.4.2 and according to (33). For the Higgs boson see [A7.3].
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Table 1: Particle energies; col.2: radial, angular quantum number; col.4:  α-coefficient in Wn according to (32)f,
however, with n = {0;1;2;..} to include electron coefficient 2/3α-3; col.5: ratio of calculated energy, Wcalc according
to (33)f and literature value [7] (* see 2.5.1, ** chpt. 2.5.3, [A7.3]); col.6: angular momentum Sz [ħ]; 

Additional particle states and blanks in the table are discussed in [A7]. The values of physical constants are
taken from [7].
To illustrate possible QED-effects and the non-linearity of the Γ-functions: a calculation of σ0 with values of
(17)f varying within +/-1.00116 gives a range of energy values of +/-1.006, varying within +/-1.001162 gives
a range of energy values of +/-1.013 compared to the values given in table 1 23. Additional effects due to e.g.
different charge in particle pairs of same isospin have to be expected.
The accuracy of ~1% of the values calculated for leptons, mesons and baryons is comparable to that of
LQCD calculations for baryons [8].

3 Higher order phenomena - gravitation, de Sitter space
3.1 Planck scale
In this work the expression
b0 = G mPl

2 = G WPl
2 /c0

4             (36)
is used as definition for Planck terms, giving for the Planck energy, WPl

 :
WPl

  = c0
2 (b0 /G)0.5 = c0

2 (αħc0/G)0.5 = 1.671 E+8 [J] (37)
The value of WPl according to definition (37) allows to identify the ratio of  We and WPl with the α-terms
given in (31), i.e. the relation between We and WPl is given by αe ≈ (3/2)3  α9, the electron coefficient in the

23 This involves Γ(0,x); the nonlinearity of Γ-functions in the parameter range of this model increases Γ(+1/3,x) << 
Γ(0,x) << Γ(-1/3,x), see fig. 5 in [A4.1].
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n, l J

v -1* '~ E-7   0 - -
0, 0 0.51 1.014 1/2
1, 0 105.66 1.008 1/2
1, 1 139.57 1.101 0

K 495 [A7] 0
2, 0 547.86 0.991 0
2, 1 775.26 1.022 1
2, 1 782.65 1.012 1

K* 894 [A7] 1
3, 0 938.27 1.011 1/2

n 3, 0 939.57 1.010 1/2
958 [A7] 0

1019 [A7] 1
4, 0 1115.68 1.020 1/2
5, 0 1192.62 1.014 1/2

Δ 1232.00 1.012 3/2
1318 1/2

3, 1 1383.70 0.989 3/2
4, 1 1672.45 0.982 3/2

N(1720) 5, 1 1720.00 1.014 3/2
1776.82 1.012 1/2

Higgs ∞,∞ ** 1.25 E+5
1.022

0

VEV ∞,∞** 2.46 E+5 1.042

Wn,Lit       
[MeV] 

α-coefficient in Wn
                                         

α(n)-1/3 [σo / σylm]1/3

Wcalc/ Wl it 

e+-  2/3 α-3

µ+-  α-3α-1

π+-  α-3α-1 [31/3] 

η 0  α-3α-1α-1/3

ρ0  (α-3α-1α-1/3) [31/3] 
ω0  (α-3α-1α-1/3) [31/3] 

p+-  α-3α-1α-1/3α-1/9

 α-3α-1α-1/3α-1/9

η'
Φ0

Λ0  α-3α-1α-1/3α-1/9α-1/27

Σ0  α-3α-1α-1/3α-1/9α-1/27α-1/81

∞, 0  α-9/2

Ξ
Σ*0  (α-3α-1α-1/3α-1/9) [31/3]  
Ω-  (α-3α-1α-1/3α-1/9α-1/27) [31/3]  

 (α-3α-1α-1/3α-1/9α-1/27α-1/81) [31/3] 
tau+- ∞, 1  (α-9/2) [31/3] 

 (α-9/2) [3/2 α-1] /2

 (α-9/2) [3/2 α-1] 



exponential  part  of  Φ,  divided  by  two  times  the  factor  αlim for  non-spherical  symmetric  contributions
according to (21). For the calculations in this work ß = We/WPl will be used.

1.53 α9

2α lim
 ≈ 1.52 α10/2  ≈ 4.8 E -22  ≈ ß  ≡ 

W e

W Pl
= 4.8996E-22 (38)

The constant G may be given as:

G  ≈ 
ß2 c0

4 b0

W e
2 (39)

Since ß and We may be expressed as function of π, Γ+1/3, Γ-1/3 and ec, (14), (33),  (38) and (79), G may be
expressed as a coefficient based on EM constants only, G ≈ 2/3 c0

4α24/(4πεc) = 6.6799E-11 [m3/(kgs2)].

3.2 Gravitation as second order term of series expansion of exponential function
Terms for gravitation may be recovered via a series expansion of either Γ(+1/3, (ρn/rn)3)  24 of (13) or the
exponential part of Φ in any suitable expression, e.g. potential ec/(4πεcr), resulting in a general term such as:

 
ec

4 πεcr [1  - σß ( e c

4 πεc r )
3]  ≈ Coulomb-term [1  - σß( ec

4 πεcr )
3] (40)

which is a very good approximation for r >  αλC.  The 1st term is the classic Coulomb term, the 2nd term
contains by definition, equ. (38), the ratio between Coulomb and gravitational terms for one electron, ß. To
turn this into the exact Coulomb / gravitation relationship requires:
1) parameter r in ec /(4πεcr) to turn into a constant,
2) coefficient σ to approach σmin 
3) parameter r to approach the value rll= 2/3 Γ-1/3 ec/(4πεc), the product of σmin

1/3 and rl.
=>1) r in the exponential may not be a free parameter for r ≥ rl ≈ rll the radius value that marks the maximal
possible value for spin of a fermion and the approximate limit of a real solution for an equation such as (70), 
=> 2), 3) coefficient σ is essentially related to spin of a particle and it has to be assumed that spin does not
play a role for r > rl. Specifically this corresponds to the limit σmin = (2Γ-1/3/3)3. An equivalent term in r will
exist for the boundary condition S = 1 [ħ], which will erase the special factor ≈ 3/2 of the electron as well (cf.
chpt. 2.4.4.2, [A9]), leaving ß as only remaining coefficient. 

 
2 Γ−1/3

3 ( ec

4 πεc
)  ( 2 Γ−1 /3

3
 rl)−1

= 1 (41)

The general expression for the series expansion will be: 

Coulomb-term (1 - ß + ß2/2 - ....)       (42)

Coefficient ß2,  necessary to give the full equivalent for replacing the constant G, is evenly split  on both
particles involved in gravitational interaction, i.e. the second ß has to be contributed from the second particle,
multiplied by appropriate coefficients from the α-series according to the α(n) of (32)f and σ coefficients of
2.5.3 for particles other than the electron (in their rest frame). Since the 2 nd term of such a series expansion
should not exceed the 1st,  electromagnetic one, the maximum (relativistic) mass for spherical symmetric
particles would be defined by αe

-1= ((3/2)3 α9)-1 while the maximum angular term, αlim as given in (21),
secures that particles that are not spherical symmetric in a rest frame can not exceed the Planck limit either.
Restricting to electrostatic contributions only 25 will give (38).
The force of gravitation between two particles 1 and 2 would be given by:

 FG  = 
G m1m2

   r2  = α (1)α(2)ß2 FC  = 
α (1)α (2)ß2 ec

2

4 πεcr
 = 

α (1)α(2)γ#
2 W e

2

4 πεcr
     26 (43)

The maximum general, i.e. non rest-frame coefficient allowed for a particle in a symmetric case would be ß -1.

24 Γ (1 /3 ,  (ρn/r)
3)  ≈ Γ 1/3  - 3 ( ρn/r )  + 3 /4 (ρn/r )4  - 3 /7 (ρn/r )7  + ... [9]

25 I.e. factor 2 in the denominator might correspond to relate only the electrostatic contributions of (14) for the electron 
with the electrostatically defined value of a Planck state, equ.(36).
26 In the last term energy refers to We in place of ec, ß2 has to be replaced by γ#

2 of (9).
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In  equations  the  coefficients  ß  (1  particle,  potential)  and  ß2 (2  particles,  interaction)  will  indicate  the
transition from EM to gravitational scale, i.e. these coefficients replace a G-term, the 3rd term in the series
expansion should feature ß2 and ß4.

3.3 The 3rd order term of the series expansion
The following will  examine some links between  Λ / deSitter-space /  MOND, based mainly on ideas of
Milgrom [11] and Aldrovandi, Pereira, et al. [12], and the results of this modified Kaluza ansatz, in particular
the series expansion of chpt. 3.2.

3.3.1 Λ / de Sitter-space / MOND / BTFR
The proportionality constant in the Einstein Field Equations (EFE), 8πG/c0

4, originates from equating G00 =
T00 in the  “weak field limit” (WFL) of  low acceleration with the corresponding term from Newton’s law.
With a non-zero Λ this relation can not be strictly valid any more and a deviation from the Newton case due
to Λ has to be expected 27. 
MOND (Modified Newton Dynamics) is an ansatz for the WFL that attempts to interpret a characteristic
acceleration, a0 ≈ 1.2E-10 [m/s], observable in several astrophysical phenomena such as the Baryonic-Tully-
Fisher-Relation (BTFR). Early on a numerical relationship between a0 and the cosmological constant, Λ0, as
well as a possible relationship with a 4D-de Sitter space (dS4) has been pointed out [11]. 
De  Sitter  space  is  the  maximally  symmetric  solution  of  the  EFE  with  a  positive  constant,  Λ.  It  is
characterized by a constant energy density and can be described as a submanifold of a Minkowski space of
dimension n+1, for dS4:

±x0
2+ x1

2+x2
2+x3

2+x4
2=RdS

2 (44)
RdS is a length parameter, the “radius” of the de Sitter space. The scalar curvature R of de Sitter space is
given by

R  = 
n (n− 1)
    RdS

2  = 2n
n− 2

Λ .    (n =dimension of embedded space) (45)

for  dS4: Λ = 3/RdS
2.  This corresponds to an embedding in a flat 5D-space-time, the general approach on

which this modified Kaluza model is based as well.
+/- x0 represents a time coordinate, the sign defines hyperbolic or spherical symmetry of the dS4.  In the
following only symmetry of a 3-sphere for space and great circles as geodesics will be considered, i.e. a
closed solution (or imaginary time e.g. in the case of particles 28) will be assumed. 
In such a dS4-geometry any worldline would formally have an acceleration component a0*:

a0
*  = v2 /RdS  = c0

2( Λ0 /3)0.5  ≈ 5.46E-10[m /s2]  ≈ 4.55 a0  29 (46)

factor 4.55 has a geometric interpretation, see (52).
One of the best-documented deviations from Newton’s limit of GR in the WFL, as expected according to
baryonic mass, is represented by  the BTFR, the strong correlation between total baryonic mass (stars and
gas) in a galaxy and rotation speed that holds in a wide range of distances far from the galactic center for
various types of galaxies [14]. It is characterized by a forth-power-relation of rotation velocity, v f = “final”
rotation velocity in the WFL, with the total baryonic mass of the galaxy, MG:

a0 GMG  = v f
4 (47)

This corresponds to the so called deep-MOND regime where a≪a0. In relation to GMG the equations (46)
and (47) have a0 in a reciprocal relationship, the dS4 interpretation does not fit to MOND in a trivial way.

3.3.2 Λ / de Sitter-space / MOND / BTFR in the modified Kaluza model
If the second term in the series expansion of (42) represents gravitation, it is expectable that the third term
represents deviations from gravitation. 

27 In a simple ansatz the effects of Λ on gravitational phenomena would be relevant on the scale of intergalactic 
interaction and Mpc [13]. Araujo et al. consider a local Λ-term as function of energy density, Λ(r) ~ w(r), in “de Sitter 
modified general relativity” to describe the BTFR [12b].
28 Imaginary time might be appropriate for the particles of this model since the exponential function of the t-coordinate 
responsible for the expansion of a hyperbolic dS4 will turn into a periodic function in a spherical dS4. 
29 Λ0 according to [16].
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3.3.2.1 Λ and a0

For assigning a value to RdS additional assumptions will be needed. A simple ansatz might be: 
  3 ß4

RdS ,e
2  ≡ Λ0              30 (48)

with RdS,e = 3.954E-17[m] tuned to give a simple relationship between ß4 and  Λ0.  Coefficient ß may be
multiplied with appropriate α(n)-terms of (34) for particles other than the electron or ratios of the relevant
mass to the electron mass 31. 
The link between RdS and a corresponding r of a particle in 3D-space will be established via energy density,
cf. [8.2]:

w  = 
4 π εc

RdS ,e
2  = 4 π ε c(ec

4 π εc r x ,e
2 )

2

         (49)

giving for RdS,e of (48) a value of rx,e ≈ 5.42E-14 [m] that is in a reasonable range for an electron, see fig.1 32.  
In  the  following  (48)  will  be  used  as  input  together  with  the  additional  assumption  that  any  relevant
parameter of dimension length, including term ec/(4πεc), has to be assigned the length parameter 2/3Γ-1/3 as
given in (41).
I.e. rx,e

4, that can be decomposed according to 

(ec

4 π εc r x ,e
2 )

2

 = (ec

4 π εc r l
)
2    1
RdS ,e

2  =    1
RdS , e

2 (50)

into rl, that cancels the electromagnetic term, and RdS, will be interpreted as 

(ec

4 π εc r x ,e
2 )

2

 = (2Γ−1/ 3

3 )
2

(2Γ−1/ 3

3 )
−4

(ec

4 π ε c r x ,e
2 )

2

 = (2 Γ−1/ 3

3 )
−2    1

RdS , e
2 (51)

This allows to identify factor 4.55 in (46) as:

a0 *2  = c0
4 (Λ0/3) ≈ (5.46E-10 [m /s2 ])2  ≈ 4.552 a0

2  ≈ 3(2Γ−1/ 3

3 )
2

a0
2 (52)

The (30.5)² signifies that 3/RdS² = Λ0 might be an appropriate reference for acceleration rather than 1/RdS² = Λ0/3.
Constructing a 3rd order term with (42) that is equivalent to Gme will require to replace ec in the denominator
by We to give:

G me

r2  = 
ß4 c0

4

r2

ec
2

ß2 c0
2 W e 4 π εc

1
2

   (53)

Using RdS,e according to (48) and relation (51)f as input in (53), i.e. assuming a0*2  (blue) to be a part of
expression (53)  gives:

G me

RdS, e
2 (2 Γ−1 /3/3 )2

 = 
ß 4 c0

4

RdS , e
2 (2 Γ−1 /3/ 3)2

e c
2

ß2 c0
2 W e 4 π εc

1
2

 ≈  
a0

* 2

a0 , calc
 33  (54)

The additional (2Γ-1/3/3)2-term turns the remaining parts of (54) into a good approximation of a0 (red) 34. The
blue part essentially depends on the choice of the value of RdS and leaves some room for speculation. Using
(48)  might  be  a  rather  unbiased  choice,  turning  it  into a0

2 might  be  another,  either  by  adapting  RdS or
expanding with 3(2Γ-1/3/3)2. Anyway, with any electron-related version of (49) the nominator of (54) will be a
term in the rough order of a0

2 while the denominator will be a0 in any case. A more fundamental metric will

30 Coefficient 3/2 will not be part of the equations due to the limit rll, cf. chpt. 2.4.4.2.
31 The maximum insertable coefficient of ß-4 would give back the bare cosmological constant, the corresponding energy
would be ß-4We ≈ 1.4E+72J, roughly in the range of the energy of the observable universe, which itself is dark energy 
dominated and approaching a de Sitter state.
32 Any other choice for rx,e, in the range of electron length parameters rmax < rx,e < λC,e would still yield values close in 
order of magnitude to Λ0 (as would direct terms from the metric, see [A8.1]).
33 Inserting (50) in (54) gives terms of (ec/(4πεc))³, corresponding to terms that might be derived directly from an 
appropriate metric, cf. [A8.1].
34 a0, calc = 1.123E-10[m/s2] = 0.936*1.2E-10[m/s2]; 
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have to clarify to what extent (48) is an appropriate ansatz. Still equ. (54) demonstrates that the specific
terms of this model can be rearranged to approximately reproduce both the a 0-Λ0-relation of (46) and the
BTFR-relation of (47). 

3.3.2.2 Baryonic-Tully-Fisher-Relation (BTFR)
The expression for the BTFR, (47), is not dependent on r, thus assumptions about RdS or rx as in chpt. 3.3.2.1
are not necessary. Solving (54) to give a0Gme results in the “BTFR” for 1 electron. To get to the galaxy scale
this has to be multiplied by MG divided by the mass of the electron 35, giving for vf

4 (Msol ≙ solar masses
[15]):

v f
4  = ß4 c0

4  (2Γ−1/3

3 )
2

M G /M e  = 7.50E+9∗M G /M sol     (55)

For an MG in the order of magnitude of the Milky Way, ≈1E+12 Msol this yields a value of vf,calc   ≈ 300km/s
(=0.83 a0 GMG), cf. fig. 2.

Fig. 2: BTFR, data from fig. 3 of [14a]:
blue  circles  observed  values;
continuous line of slope 1/4 calculated
with (55), dashed line: additional factor
of  2  in  (55);  dotted  line:  vf

4
 =

ß4c0
4MG/Me;

Calculating RdS for the Milky Way (≈1E+12 Msol) with (48) gives RdS = (3ß4/Λ0 MMW/Me)0.5 ≈ 6E+19[m] ≈
6[kLy] as an approximate order of magnitude for a transfer to deep-MOND behaviour in a galaxy.

3.3.3 Summary Λ / de Sitter-space / MOND / BTFR
- a non-zero Λ in the EFE requires a deviation from the Newton limit,
- the value of Λ does not fit phenomena such as the BTFR => Λ should be variable => Λ(r), with Λ0 as limit;
  this does not contradict the 2nd Bianchi identity since Λ(r), including its lower limit Λ0, will be a  part of 
  Gαß, i.e. it has its origin in the metric,
- the numerical relationship a0 ≈ c0

2/Λ0 
0.5 hints at an interpretation in terms of a dS4,

- the first 3 terms in the expansion of the exponential of Φ according to (42) may be interpreted as:
  electromagnetic + gravitational + dS4-background (Λ, BTFR, etc.), i.e. the dS4-space is an integral part of  
  the mathematical framework of this model,
- the dS4 is centered at the center of the potential well, mass/energy distribution, 
- trajectories on great circles in the WFL might be based on the geometry of a dS4, 
- a quantitative link between RdS and a 3D-radius may be given via energy density according to (49)ff,
- the relevant values of Λ0 and a0 fit to an origin in parameters of the electron,
- the BTFR can be reproduced qualitatively and quantitatively.
One of the major open questions that remain is the role of Λ0 as a parameter related to expansion of space-
time. As Λ(r) would in general be related to particles this requires to reinterpret the concept of expansion of
the universe fundamentally. In (42) the 2nd and 3rd terms have an appropriate opposite sign corresponding to
repulsion of the latter. (The analog of the repulsive term (32) in [12b].) The close relation to particles might
suggest that expansion on the scale of the universe might correspond to the composite effect of the expansion
of the fields of all particles. An exponential of type (70) implies imaginary solutions and a change of sign for
the r-coordinate in the metric for r < rl <=> r > rl, presumably switching from exp(ix) for periodicity / particle
state to exp(x) for expansion / external fields.
35  If one prefers the nucleons as a more natural starting point this will require a multiplication by α(n) = 1836 and the 
number of nucleons for the particular galaxy in (55).
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4 Quaternion ansatz
4.1 Basic approach
The model as described above emphasizes a Kaluza-like ansatz with spin as boundary condition. Reversing
the main focus, emphasizing angular momentum and implicitly assuming curvature of space as necessary
boundary condition for localization is a straight forward alternate way to get additional information about the
states of this model, details are given in [A5].
A circular polarized photon with its intrinsic angular momentum interpreted as having its E- and B-vectors
rotating around a central axis of propagation, C, will be transformed into an object of SO(3)-type symmetry
where the center of rotation is the origin of a  triple of  EBC-vectors, supposed to be locally orthogonal  36.
This has the following qualitative consequences:
1) Such a rotation is related to the group  SO(3) and  SU(2) as important special case. In the following a
quaternion ansatz will be used for modelling the respective rotations. 
2)  E-vector  constantly  oriented  to  a  fixed  point  implies  charge.  As  implicitly  assumed  above,  neutral
particles are supposed to exhibit nodes separating corresponding equal volume elements of reversed E-vector
orientation and opposite polarity.
3) A local coordinate system = rest frame implies mass.
4) In case of any lateral extension of the E-field, for r -> 0 the overlap of a rotating E-vector implies rising
energy density, resulting in rising curvature of space-time according to GR or its modification as of equ. (8).
5) The EBC-triple can be given in 2 different chiral states (left- right-handed).
6) As essentially electromagnetic waves such states are consistent with a “point-like” structure function on
the other hand imply a spatial distribution of energy density and angular momentum / spin.
7) Antiparticles may be constructed by switching orientation of fields and chirality.
For quantitative results 3 orthonormal vectors E, B, C, each described as imaginary part of a quaternion with
real part 0, will be subject to alternate, incremental rotations around the axes E, B and C. In the following
only solutions where one of the incremental angles of rotation has half the value of the other two will be
considered.  This  may  serve  as  a  primitive  model  for  spin  SZ =  1/2.  There  are  3  possible  solutions
corresponding to half the angular velocity for each of the components E, B, or C. The trajectory of the E-
vector encloses a  spherical  cone,  the spherical  cap of the cone encompasses a fraction of the area of a
hemisphere of 2/3, 1/3 and 1/3, respectively. Mirroring at the center of rotation gives the equivalent double
cone (dark grey in fig. 3), the fractions of both caps in relation to the surface of the total sphere may be
interpreted  to  give  partial  charges  of  2/3,  1/3  and  1/3  according  to  Gauss’ law.  In  the  following such
components will  be assigned to uds-quark-like entities, the assignment (half-frequency-E-rotation, charge
+2/3, U),  (half-B, charge -1/3, D), (half-C, charge -1/3, S) will be used. 

Fig.3: Trajectories of the E-vector, enclosing spherical cones and spherical wedges

The E-vector might as well be interpreted to enclose the complement of the double cone of a 3D-ball (white
in fig.  3),  a  spherical  wedge.  This gives the objects complement-U, complement-D, complement-S with
charges 1/3, 2/3, 2/3. These objects may be assigned to cbt-quark-like entities. 
A combination of two cones to give a double cone will always give a valid solution with any spin or chirality

36 In the limit r -> λC  => |C| -> |c0|; In place of C an equivalent of a Poynting vector may be used; Since in this model 
the 5th coordinate, x5, seems to be related to the inverse of the electromagnetic fields some description inspired by a 
Poynting vector might be a useful approach for x5.
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and may be considered to correspond to the y1
0 solutions of chpt. 2.6  37.

The simplest combination of 2 entities (grey + white) of fig. 3 will consist of 2 complementary segments of
same charge, chirality, phase, etc., to recover a simple sphere with no nodal planes (last row of fig. 3). Such
particles should represent the lowest possible energy state,  SZ = 1/2 should still be valid and charge could
have values of +/-1 or 0. An electron might be considered e.g. as an (anti-U + (U-Complement = B)) particle,
however, unlike a B-meson with spin 1/2. While this is not possible with quarks, i.e. objects with particle
character, it would represent the simplest solution for such a type of an electromagnetic wave. 
The neutral configuration will have to be distinct from all other particles by representing a state where the
center of rotation is not at the “tip” of an E-vector, but at its “center”, see last row right in fig. 3. This will be
an intrinsically neutral particle unlike particles consisting of components of opposite charge, such as the
neutron, and a unique solution that for geometric reasons is not suited as component to build other particles.
It will not be subject to the conditions related to “charge” and ß as discussed in 2.4 or 2.5. 

4.2 Magnetic moments of baryons
A particular sensitive test for such a toy model will be the calculation of the magnetic moments of baryons
from  an  orthogonal  combination  of  3  U,D,S-units  (cf.[A5.2]).  It  is  possible  to  give  values  for  all
combinations of the uds-octet of spin 1/2 that match the experiment within a few percent, however, they have
to be selected from a larger set of solutions.  Unique solutions require additional boundary conditions, for
nucleons this will be isospin: exchanging U- and D-components results in switching the values for magnetic
moment of p and n, (cf.[A5.3]).

Table 2: Magnetic moments for proton and neutron (units in standard SI, cf. [A5.2]); |M|exp: [7];

A simple analysis for particles with S-components is not possible due to differences in symmetry (cf. tab. 4
in [A5]) that prevent a simple cancelling of Sz=1/2 components by exchange of U-S- or D-S-units.

4.3 Chirality / “Color” 
The orthonormal EBC-vectors feature two possible chiral configurations, right-handed “R” and left-handed
“L”, suggesting to be a possible source for a factor 3 frequently appearing in the quantitative interpretation of
processes involving a quark-antiquark-pair, such as in the decay of the W- or Z-boson or in the coefficient R
of electron-positron-annihilation. While this is attributed to the 3 “colors” of quarks in the SM, the same
factor would result for any pair of quark-like states having the possibility to exist in triplet-like states, “LL”,
“RR” and (1/√2) (LR+RL) 38 (referring to an axial vector representing the EBC-configuration). 

4.4 Coupling constants
The  reasoning  of  chpt.  2  is  based  more  on  a  point  charge  picture,  of  chpt.  4  on  a  photon  one.  The
combination  of  both  involves  the  fine-structure  constant,  which  may  be  calculated  by  equating  the
expressions for point charge and photon energy:

W Phot ,n=hc0 / λC, n  = hc0  / ∫
λC ,n

e
−( ρn

r )
3

dr  =  W n, pc  = 4 π εc ρ0
2  ∫

0

rn

exp(−(ρn /r)
3)r−2  dr (56)

Equations such as (11)ff are based on the integral over a 3-dimensional point charge term modified by the
exponential term according to (5) with N = 3, and a complementary integral - in 3D for length, λC - to yield a
dimensionless constant. This may be generalized to N dimensions (N ={3; 4}), to give a point charge term
(SN = geometric factor for N-dimensional surface, in case of 3D: 4π; 4D: 2π2):

37 Composite objects - in particular if composed of 3 UDS-components – may feature sufficient spherical symmetry to
approximately conform to the respective symmetry in the energy equation (34). The spherical symmetry of nucleons as
assumed in chpt. 2 may be given by a suitable linear combinations of the states discussed in [A5], [A6], cf. [A7.2, η].
38 With a singlet state corresponding to destructive interference; 
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|M|Calc/ |M|Exp
1.41E-26 1.39E-26 0.988

n 9.66E-27 9.55E-27 0.988
1.001187

|M|Exp[Am2] |M|Calc[Am2]
p+-

p+/n



∫
0

r

exp(−( ρ/ r)N)r−2( N−1)  d N r  = SN∫
0

r

exp(−(ρ /r)N) r−(N−1)dr (57)

that has to be multiplied by a complementary integral 

∫
0

r

exp(−(ρn /r)
N )r(N−3)dr      (58)

 Both electroweak coupling constants can be given in 1st approximation as

α N
−1  = SN  

Γ (+m /N )Γ (−m/ N)
m2  =  S N

Γ (+(N −2)/N )Γ (−(N−2)/ N )
(N−2)2     (m = N-2, cf. (12)) (59)

i.e. as product of the constants in the integrals (57)f, SN and the Γ-functions. The exact result depends mainly
on the integration limit of the second integral, cf. [A4]. For the  fine-structure constant this gives  α-1 ≈ 4π
Γ+1/3Γ-1/3. Table 3 summarizes some results, details are given in [A4].

Table 3: Results for 1st approximation of electroweak coefficients 39

6 Summary
Theory of everything is a somewhat ironic and pompous term and maybe an unachievable goal. At the time
Theodor Kaluza’s unification of general relativity and electromagnetism was conceived, it came pretty close,
yet the emerging theory of quantum mechanics  (QM) moved the finish line.  It is a common thought ever
since that the theory of General Relativity (GR) somehow has to be unified with QM. The model presented
here suggests that the ansatz of Kaluza is sufficient to give an excellent model for particles, in particular in
combination with the boundary condition spin, bypassing QM in 1st approximation 40.  The major deviation
from conventional GR is dropping the constant of gravitation in the field equations, a minor thing from a
mathematical  point  of  view.  The resulting objects of  interest  are  waves only,  which naturally  fits  basic
concepts  of  QM.  General  features  of  quantum  mechanics  that  emerge  from  such  an  ansatz  include
quantization of energy or the pivotal  constant of quantum mechanics,  Planck’s constant,  h, that may be
derived from the electromagnetic constants and the expression of α in terms of gamma-functions. 
QM may be seen as an effective theory where the spatial distribution of energy density of GR is replaced by
a single parameter “mass” and the wave function represents actual wave-like states. Since QM is background
dependent and curvature of space-time from the view of the model presented here is not negligible but the
dominating effect as far as particles are concerned some concepts of QM might need reconsideration.
Comparing with the quantum field theory (QFT) of the standard model of particle physics (SM):
The results of the quaternion ansatz of chpt. 4 reproduce the set of elementary fermions of the SM. The
number of 12 basic building blocks of matter can be traced back to the 3 possibilities to single out one of the
orthogonal EBC-vectors and in a broad sense is a consequence of the 3 space dimensions in 4D space-time.
While in the SM the properties of quarks, such as partial charges, are deduced from experimental particle
data they can be derived in the quaternion ansatz. Leptons are an integral part of the particle classification
scheme.
There are several features of the model that indicate a close relationship with electroweak theory. In addition
to the obvious common root in EM there are: SU(2) symmetry, the energy of the Higgs boson /VEV as upper
limit for particle energy and the electroweak coupling constants as central parameters. As  for chirality the
inherent chiral character of a circular polarized EM-wave is transferred via the orthogonal EBC-triple of the
quaternion ansatz to particles. 

39 Experimental values: PDG [7]: sin2θW = 0.231, CODATA [10]: sin2θW = 0.222). 
40 QED terms are considered to be a necessary correction for the results of this model. 
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Constant

Exp. values 
30.4-31.7

136.8 137.036
0.227 0.222-0.231

m(W-boson)/m(Z-boson) 0.879 0.882

Calculated values of inverse of coupling 
constant, αN

-1, weak mixing angle

αweak 2π2 Γ+1/2 Γ-1/2 /4  =  π3  = 31.0
α 4π Γ+1/3 Γ-1/3  = 4π Γ+1/3 Γ-1/3 =

sin2(θW) α/αweak

cos(θW)



On the other hand, there seems to be no deeper connection with the concepts of quantum chromodynamics
(QCD), such as color  41 or gluons. Properties such as confinement or the need for adhering to the Pauli
principle in e.g. the Δ++  are obsolete for an object that is an electromagnetic wave. The development of the
SM from constituent quarks towards QCD, based on valence and sea quarks plus gluons, was in part required
by the limitations in explaining scattering experiments with 3 point-like objects only. The waves of this
model are consistent with a point like structure function and still feature spatial extension.
Thus not all details of the SM are reproduced by the particle model presented here. However, the relevant
benchmark is the agreement with experiments and as for the aspects examined up to now and described
above this modified Kaluza model tends to exceed the capabilities of the SM considerably, last not least in
regard of the number of free parameters needed: zero. Preliminary results for additional properties such as
particle decay or scattering seem to be promising as well (see e.g. [A6]). 
The origin in the formalism of GR is a particular strong point since it allows to use the same concepts and
parameters from the particle to the cosmological scale. A fundamental model for elementary mass should be
expected to yield some information about mass interaction. In reverse, since the latter exists in form of the
concepts of GR it  might  be no surprise that  these concepts  are  useful  to describe mass  itself.  That  the
relationship involves a simple series expansion in turn raises expectations that the following term captures
deviations from the simple laws of gravitation.
The 3rd order term is interpreted as a 4D-de Sitter space, a subspace of the flat 5D-Minkowski space-time  of
this  modified  Kaluza  ansatz.  A  close  connection  of  4D-de  Sitter  space,  cosmological  constant  and
astrophysical phenomena described by MOND has been proposed by M.Milgrom since the 1980s and is
reflected in the equations of this model. 
Minor assumptions and coefficients take up a lot of space in this work, with the aim of achieving the best
possible agreement with experiments and observations. However, already the most basic framework gives
reasonable approximations. The BTFR, shown in fig. 2, is a typical example for the efficiency of this model: 
Even the simplest relationship (vf

4 ≈ ß4c0
4 MG/Me) gives results in the correct order of magnitude, while one

or two additional assumptions may lead to a precision in the range of a few percent. Moreover, since ß 4 =
(Me/MPl)4 = (FG/FC)2 holds, not only electron mass is obviously the only input parameter but one can also
easily identify the underlying series expansion and might infer that the combination of electrostatic potential
times some exponential function could be useful to calculate particle energy as well.
Overall, with the modified Kaluza model it is possible to get results that cover about 5 decades in order of
magnitude of energy density or length within an error of factor of 2 42, see fig. 4.
Many details still need  significant improvement.  The simple ansatz used requires sufficient separation of
length and interaction scales and is not expected to cover intermediate cases such as the transition between
Newton and deep-MOND behaviour. Accuracy seems to be limited by the appropriateness of the incomplete
gamma functions, e.g. choice of different functions, results compared to input without gamma functions and
the general question how accurately the approximations that yield the simple exponential of Φ represent the
actual  state.  A more specific  version of  the  metric  is  needed that  includes  the  magnetic  potentials  and
accounts for spin to further clarify various aspects, e.g. whether the terms of the series expansion can be
directly attributed to 1st and 2nd derivatives of the exponential function in the metric.

 Fig.  4: Energy  density,  w,  vs.  length  
parameter, r (using Compton wavelength
and Λ-0.5), for states described by this 
model;  agreement  with  experiments  and  

41 Whose role in the production of quark-antiquark pairs is replaced by chiral pairs, see chpt. 4.3.
42 Electron, Higgs-VEV/Boson energy and BTFR give calculated values within a factor of 2 of the experimental ones,  
as does values for vacuum energy/cosmological constant if back calculated from the BTFR.

16 TOE260130

-18 -16 -14 -12 -10 -8 -6 -4 -2 0
-10

0

10

20

30

40

lg(r[m]) 

lg
(w

[J
/m

^3
])

+26



observations within factor of 2 (ex. v);

Conclusion
A formalism  based  on  a  Kaluza  ansatz with  spin  as  boundary  condition  provides  a  simple,  coherent,
comprehensive and first of all quantitative description of phenomena in physics that covers a range from the
particle to the cosmological scale, including:
-  a set of 6 lepton-like and 6 quark-like objects with the associated charges, defined by 3D-space and spin 1/2,
- a convergent series of particle energies quantized as a function of the fine-structure constant, α, spanning
   the range from the energy of the electron to the Higgs VEV, 
-  magnetic moments of baryons,
- a single expression for the values of electroweak coupling constants, 
- a series expansion for Kaluza’s scalar Φ that allows to identify the first 3 terms as representing  
   electromagnetic + gravitational + dS4-background -contributions,
-  values of Λ0 and a0 of MOND/BTFR in the correct order of magnitude.
The  model  works  ab initio without  free  parameter  and  allows  to  remove  some values  from the  set  of
fundamental constants: 
electromagnetic constants, h, G, α, αweak, energies of elementary particles   =>   electromagnetic constants.
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Appendix
In the following the exponential part of Φ2 is abbreviated as ev. 
[A1] Scalar potential Φ
Equ. (5) may in general be interpreted to refer to the highest order terms of exponential N in Φ'':

ΦN ' '   ~  ( ρ3 N −1

r3 N +1 )eν / 2  ~ ΦN
3  e−ν (Ael ')

2  ≈ [ ( ρ
r )

N−1
e ν /2 ]

3

e−ν ( ρ
r2 )

2
   =   ( ρ

r )
3 N −3

eν / 2  ( ρ
r2 )

2
(60)

The solutions for the scalar Φ depend on the complete metric used. The easiest method to get a solution of order N is to
use spherical coordinates of dimension N+1. Using e.g. the line element for a 4D metric of [4, equ. 6.76] 

ds2  = eν dt2−e λ dr 2−eµ r2(dϑ2+sin2 ϑ dφ2) (61)
and Aα = (Ael, 0, 0, 0) gives as solution for equ.(4) (cf. [4, equ. 6.77], prime corresponds to derivatives with respect to r):

Φ ' '+( v '−λ '+2µ'
2

 + 2
r
)Φ '  - 1

2
Φ3 e−v( Ael ')

2  = 0 (62)

This can be solved with a function of type (5) for N = 2:

 Φ2 '  = [−( ρ
r2 )  + 2 ( ρ3

r4 )]eν (63)

and

 Φ2 ' '  = [2( ρ
r3 )  - 10( ρ3

r5 )  + 4 ( ρ5

r7 )]e ν (64)

The ρ1 terms cancel in (62), the ρ3 terms can be eliminated by appropriate choice of v', λ' and µ', a remaining factor in
the ρ5 term could be compensated by assuming a corresponding factor in Ael. For N = 3 hyperspherical coordinates  with
the line element

ds2  = eν dt2−e λ dr 2−eµ r2(d ψ2+sin2 ψ(dϑ 2+sin2ϑ dφ2)) (65)
may be used. A more complex metric of the kind given in [A2] may be used as well to solve equation (62). 

[A2.1] Metric / point charge
[A2.1.1] Metric with equation (10) as solution
Equ. (10)f would be the result of the following metric (which does not account for magnetic potential or spin!):

g µµ  = (ρ0

r )
2

exp(−(ρ
r )

3

) Ael
2 ,   −(ρ0

r )
2

exp((ρ
r )

3

)Ael
2 ,   − r2 Ael

2 ,   − r2 sin2ϑ Ael
2  = 

g µµ  = (ρ0

r )
4

exp(−(ρ
r )

3

) ,   −(ρ0

r )
4

exp((ρ
r )

3

) ,   − ρ0
2 ,   − ρ0

2sin2 ϑ

(66)

[A2.1.2]  Metric with typical extra terms
The following gives an alternate metric in some detail  to illustrate the significance and order of magnitude of the
relevant terms:

g αα  = (ρ0

r )
2

exp(−(ρ
r )

3

) ,   - (ρ0

r )
2

exp((ρ
r )

3

),   −r2 ,   − r2 sin2ϑ   (67)

The variable r is marked bold if originating from the exponential term to facilitate a discussion of the implications of its
restricted range of validity. 
Γ01

0 = Γ10
0 = - 1/r1 + 3/2 ρ3/r4 Γ00

1 = - 1/r1 e -2v + 3/2  ρ3/r4e -2v

Γ11
1 = - 1/r1  - 3/2 ρ3/r4

Γ12
2 = Γ21

2 = Γ13
3 = Γ31

3 = + 1/r1 Γ22
1 = − r3/ρ0

2 e-v   = Γ33
1/sin2 ϑ 

Γ23
3 = Γ32

3 = cot ϑ Γ33
2 = − sin ϑ cos ϑ

R00  =  e2v [+1/r2  + 6 ρ3/r5 - 9/2 ρ6/r8)]
R11 = +3/r2  - 6 ρ3/ r5 + 9/2ρ6/r8

R22  = - 1+  e+v [+ r2/ρ0
2 + 3ρ3r3 /(ρ0

2r4)]
R = + 2/r2 +  ev [(- 4/ρ0

2 - 6ρ3r/(ρ0
2r4)+ 12ρ3 r2/(ρ0

2 r5) - 9 ρ6 r2/(ρ0
2 r8)]
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G00 = e2v [+1/r2 + 6ρ3/r5 - 9/2ρ6/r8)] - ev ρ0
2/r4 +  e2v [2/r2 + 3ρ3/(rr4) - 6ρ3/ r5 + 9/2 ρ6/(ρ0

2 r8)] = 
- ev ρ0

2/r4  +  e2v [3/r2 + 3ρ3 /(rr4)]  
Volume integrals over any ρn/rn+2 term will yield energy results  εc∫ev  ρn/rn+2 d3r ≈ εc ρ ≈ 1E-22 [J] compared to the term
εc∫ ev ρ0

2/r4 d3r ≈ εc  ρ0
2 ρ-1  ≈ 1E-13 [J] (both with coefficients for the electron, σ0ß) giving negligible contributions to

particle energy within the parameter range discussed here. This leaves the first term as leading order: G00 = − ev ρ0
2/r4 .

[A2.2] General solution N = {1; 2; 3} 
This article has a focus on a solution of (5) with N = 3. However, all solutions in a 5D space-time according to [A1], i.e.
up to using hyperspherical coordinates,  N = {1; 2; 3}, might be used for the ansatz of a metric such as 

g00  = ∑
N =1

3

(ρ0

r )
N−1

exp(−(ρ
r )

N

)   (68)

With the approximation σ ≈ 1 and assuming an identical coefficient ß in each term this gives for g00:

g00  = exp(−ß (ρ0

r ))   +  (ρ0

r )exp(−ß( ρ0

r )
2

)   +  (ρ0

r )
2

exp(−ß (ρ0

r )
3

)   (69)

Each term might be expanded and split in EM and gravitational part as suggested in chpt. 3.
The 3rd term corresponds to the case discussed above, resulting in terms giving the square of the E-field in G 00 and
eventually particle energy as a kind of self energy. The second term is the linear version and might be used to construct
solutions for potential terms. The first term might represent a general vacuum solution, i.e. without presence of any field
ρ0/r. 

[A3] Model coefficients
[A3.1] Coefficient σ as component in ρ
The exponential term, exp(-ρ3/r3), together with the r-2 dependence of the field of a point charge define a maximum of
particle energy near rW(max) ≈ ρ, rapidly approaching 0 for rW(max) > ρ, effectively allowing to approximate particle energy
without using a specific upper integration limit, rn, see fig. 1.  On the other hand the weaker r-dependence of angular
momentum, ~1/r results in the calculated values being completely dominated by an integration limit. The limit of the
Euler integral of a particle is given by ρn

3/rn
3, a constant which will be denoted 8/σ in this work.

A general exponential function of radius featuring a limit radius,  assumed to correspond to a damped oscillator-like
solution and a discriminant term, may be given in 1st approximation as:

  e v'  = exp(−( ßρ'3

2r3 +[( ßρ '3

2r3 )
2

– 4 ßρ '3

2r3 ]
0.5

))   (70)

ß being some general coefficient. At the limit rn of the real solution of (70)

(ßρ '3 /rn
3)2  = 8 ßρ '3 /rn

3     =>    ß  = 8( r
ρ ' )

3

= σ     (71)

holds, reproducing the definition of σ according to (15). Within the parameter range of this work for calculating particle
energy the function ev’ ≈ exp(-(ßρ‘3/r3)) is a very good approximation of an equation of the kind of (70) and coefficient σ
will have to be part of the exponential. 
For numerical calculations using a term of type (70) and r > αrn, i.e. limits to calculate Sz or S, requires an additional
factor to appear in the denominator of the linear term of the discriminant (≈ σ0 in case of Sz).

[A3.2] Coefficient σ, coefficient 1.5x
The basic relation of α(n) and σ with the fine-structure constant α and coefficient Γ-1/3/3 is due to the considerations of
chpt. 2.4ff. To get a more detailed description in a range of 1% precision is difficult since there are several options
conceivable and in this range of accuracy QED and other minor effects may be expected, which might be amplified due
to the non-linear nature of the Γ-functions involved. A factor ≈ 3/2 appears in several terms such as σ0  ~ 1.5α-1 of (6),
the ratio  of  electron  and  muon energy  =1.5088,  Γ-1/3  /Γ+1/3  =1.516,  π/2 = 1.5707,  (4π)1/6  and the  irregular  electron
coefficient in the power series that is part of ß as well. The following discusses some relevant aspects with a focus on
identifying possible underlying relationships while minimizing assumptions about the term ≈ 3/2 in particular. 
To get the value of ec from (13) coefficient Γ(+1/3)/3 is required to appear as a term in W(ec) due to the Euler integral,
thus a counter term would have to be part of ρ in (13):

W (ec)  = 
ec

2

4 π εc
∫ exp(−Γ+1 /3

3
e c

4 π ε c
)
3

r−2 dr  = 
ec

2

4 π εc

Γ+1 /3

3 ( Γ+1 /3

3
e c

4 π εc
)
−1

 = ec (72)

To deal with both Γ-1/3 and Γ+1/3 an additional term of 2π in the denominator of ρ and relation (78) might be useful, e.g.
with coefficients of (23)ff:
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λC  ~ 30.5∫exp−( Γ+1 /3

2 π 3
ec

4 π εc )
3

dr  ~ 
Γ−1/3 Γ+1/3

2 π 30.5  
ec

4 π εc
 = 

ec

4 π εc
(73)

Since according to 2.4.3 σ-terms should appear as σ2/3 in a length expression and using the simplest version of σ,  σlim =
(2Γ-1/3/3)3 an  additional  term  ((2π)-1Γ+1/3  /Γ-1/3)3 (bold  in  (74))  in  ρ  would  cancel  redundant  Γ-1/3/3  terms  in  the
corresponding length expression as well:

λC  ~ 30.5 σ lim
1/3

2
ρ  ≈ 30.5

2 (2 Γ−1/3

3 )
2

 
Γ+1 / 3

2 π Γ−1/ 3

e c

4 π εc
 = 2

3
ec

4 π εc
(74)

A term 2/3(2πΓ-1/3/ Γ+1/3) consists of components related to angular momentum, appears in (81) and may thus be used in
alternate expressions for σ0. 

[A3.3] S = √3/2 as limit of a particle state
One has to be careful to compare the relationship of SZ and S in this model with the classic or quantum mechanical
state. SZ refers to a preferred orientation that might be relevant in a regular particle state, in particular in linked particle
sub-states as discussed in [A3.5], due to necessary alignment of the internal fields. At the transition to a free point
charge field these restrictions may be lost and S = √3/2 marks the absolute limit of a particle state. In addition:
- it is the value where particle coefficients cancel in the exponent of Φ, leaving the pure electric potential term,
- it is the approximate limit for a series expansion of the exponential of Φ to yield a gravitational term, chpt. 3.
The upper limit of the particle energy series, cf. [A7.3], the transition from a vector rotating on the surface of a cone to
the vector itself, seems to be somewhat similar to the spin situation and shares the factor σmin, however, the final state is
considered to have S = 0.
The unique value for radius, rl, defined by S = √3/2[ħ] in chpt. 2.4.4.1 allows to calculate ß directly with ( 29) by fitting
for rl,  S = √3/2 or both. Depending on which parameters one sets the focus on and the preferred approach for  σ0,
accuracy may vary in a range of  ~ 1%, typical for this model [A3.4].

[A3.4]  Choice of gamma-functions
The ratio of length values characterizing S=1/2 and S=√3/2 allows to assess possible differences due to the usage of Γ-
functions:
- calculation of Γ(1.E-15) as approximation of Γ(0), using https://keisan.site/exec/system/1161228685: rl/re = 54.136
(1.000077 relative to theoretical value √3/(8πα); own numerical calculation with Γ(0): 1.00015);
- ratio √3ec/(4πεc)/λC,e: rl/re = 52.960;
- numerical calculation of Γ(-1/3, x): result depends on error budget for We, S=√3/2[ħ]; rl/re = 52.960 
(Error We: 1.037,  S=√3/2[ħ]: 5E-6);

[A3.5] Relationship with Lorentz boost / (Wigner-) rotation/spin
Interpreting  the  difference  in  wavelength  of  different  states  as  a  length  contraction  due  to  a  Lorentz  boost  and
calculating the necessary velocity according to l = lo(1-v²/c0

2)0.5, the ratio of 2 consecutive steps will converge to vn/vn+1

= 30.5 for large n (i.e. small vn). This is the ratio of the sum of 3 orthogonal vectors of equal length to a single vector, a
simple vector addition that corresponds to a Wigner rotation in 3D for the non-relativistic limit [17]. By adding again 3
orthogonal vectors of the resulting vector sum (i.e. of length 30.5 of the original vector) one may construct an infinite
series of connected states. 
The ratio of the vectors, 30.5, is the same as that between total spin S = √3/2 and its z-component Sz =1/2,  indicating that
angular momentum and in particular alignment of magnetic moment / spin of sub-units of particle states may play a
role. A connection with the [ħ]/2-√3[ħ]/2-relation in chpt. 2.4 might be possible.
The relation according to a Wigner rotation will be less simple for small n. A relationship such as given in (32) might
describe a cascade of interrelated particle states that smoothly transforms into what conventionally would be considered
the “field” of a particle.

[A4] Coupling constants in N dimensions 
[A4.1] Fine-structure constant, α
Using equ. (23) for the incomplete Γ-function and multiplying rx in the integration limit (ρn/rx)3 by √3 to obtain a term
for Compton wavelength, λC,n, (cf. (26)), gives in good approximation:
λC,n  ≈ 31.5 σ0

1/3/2 ρn/3 (75)
With (75) energy of a photon may be expressed as:

W Phot , n  = hc0  / ∫
λC , n

e
−( ρ

r )
3

dr  = 
2hc0

30.5 ρn σ 0
1/3

(76)

Equating (14) with (76) gives:
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Wpc,n = WPhot,n = 2b0 Γ+1/3 ρn
-1 /3  =

2hc0

30.5 ρn σ0
1 /3 (77)

Solving equ. (77) for α will involve a term of two Γ-functions with an argument of same value and opposite sign for
which the relation Γ(+x)Γ (-x) = π /(x sin(πx) holds [9], giving for the product Γ+1/3Γ-1/3:

Γ+1/3 Γ−1/3  = 30.5 2π (78)
Using equation (77) with (78) and (19) will give

α−1  = 
hc 0

2 π b0
 = (Γ+1 /3

30.52 π )  (2 Γ−1 /3

3
1.5
α )  = (1α ) (79)

This would justify the use of α in (19), however, the factor of 1.524 should be rather exactly 3/2. The resulting σ would
be σ* = 1.725E+8 ≈ 0.95σ0. The precise result of 3/2 for factor ≈ 1.5 in (19)ff is actually misleading, since due to the
integration limits in (12) the values for the gamma functions have to be rather those of the incomplete gamma functions,
i.e. (79) can only hold approximately, cf. fig. 5. 
An alternate, geometric interpretation gives a value closer to σ0 of 2.4.2:

σ 0
*  = 8 ( 4 π

3
 Γ−1/3

3)
3

= 1.7715E+8 (80)

that allows to obtain a volume-like term in the energy expression, a term of the kind of (20) might represent a 1D-term.
The expression equivalent to (79) would be:

α−1  = 
hc 0

2 π b0
 ≈ (Γ +1/3

30.5 2π )  2(4 π
3

Γ−1/3
3)  ≈ 2

3
Γ−1 /3

Γ+ 1/3
4 π Γ +1/3 Γ−1/3  ≈ 4 π Γ+1 /3 Γ−1 /3 (81)

Equations (79) and (81) do not necessarily contradict each other. In chapter 2.4.3 and [A3.2] reasons are given for the
same gamma-functions to appear more than once in the relevant equations. Inserting the result of (81) in (79) and
considering that at least one of the Γ(+1/3) Γ(-1/3) pairs has to refer to the integrals of (56)f, i.e. they have to be given
as Γ(+1/3,x) Γ (-1/3,x) with values including the deviations at the integration limit of σ0, see fig. 5, gives:

α−1  = 
Γ (+1 /3 , x)
30.5 2π

 
2 Γ (−1/3 , x)
         3

3
2

 4 π Γ +1/3 Γ−1/3 (82)

As can be calculated or taken from fig. 5 the ratios of the gamma functions are approximately  Γ(+1/3,x)/Γ(+1/3)=
0.9977; Γ (-1/3,x)/Γ (-1/3)=1.0154, (4π Γ+1/3Γ-1/3)/α-1=0.9980. The product gives 1.011 which is 2/3 Γ(-1/3)/ Γ (+1/3) =
2/3 1.5164 of (81), i.e. ≈1.5 in (79) may be interpreted as the term Γ(-1/3)/ Γ (+1/3) of  (81).

Fig. 5: Γ(+1/3, 8/σ) - green dots, lower x-scale /  Γ(0,
31.58/σ) - orange dashes, upper x-scale /  Γ(-1/3, 8/σ) -
red  continuous  line,  lower  x-scale;  black  lines  mark
selected σ-values as discussed in the text; reference for
Γ(0) is α-1/(8π), for Γ(+1/3,x) =>  Γ(+1/3) for Γ (-1/3,x)
=> 36π2Γ(-1/3) 43;

[A4.2] Coupling constants -  geometry, integrals
The 3D case of the coupling constant is easy to interpret, for the 4D-case some assumptions have to be made concerning
the integration limit. The following gives an alternative aproach for [A4.1] (ev(N) = exp(-(ρ/r)N)).
3D case:
The exact value of the product of the integrals (41)f, depends on the integration limit relevant for the second integral,
i.e. the lower integration limit of the Euler integrals, which may be expressed as 3D volume with Γ-1/3 as radius (80):

ρn
3 /λC , n

3  = 8/ (31.5 σ 0)  = (30.5 4 π
3

 Γ - 1/3
3)

−3

    (83)

The additional factor 30.5 may be interpreted as the ratio between rn and λC,n as required in the expression for photon
energy and given by(26), √3 is due to (78). This gives Γ(-1/3, 1/σ0) ≈ 36π2Γ-1/3 and 

2∫
0

r

ev (3)r−2d r∫
0

r

e v(3 )dr  ≈ 2 [ Γ1 /3

3 ][2 π2 π9
Γ−1 /3

3 ]  = 4 π Γ1 /3 Γ−1/3  2π  = 2π  α−1  44 (84)

43 Term 36π2 from 2b0Γ+1/3/3 = 2πh/2π c0 3/(36π2Γ-1/3) ;
44 Factor 2 from adding electric and magnetic contributions to energy;
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The result of (84) yields a dimensionless constant α' = hc0 4π ε/e2 and it may be seen as a matter of choice to include 2π
in  the  dimensionless  coupling  constant.  Factor  9  cancels  the  corresponding  factors  from the  Euler  integrals.  The
remaining factor of 4π is needed to yield the correct value of α. 
A general N-dimensional version of (83) may be given as:

8 /σN  = (30.5δV N  (Γ (- 1/N))N )−N /( N−2 )
    (85)

VN is the coefficient for volume in N-D, coefficient 30.5 will be omitted in 4D where coordinate r is assumed to be
directly related to energy via rn ~ 1/Wn and rn might be directly identified with λC,n; the equivalent of (78) would not
involve √3 but give 2π; subscript in σN corresponds to dimension in the following.

4D case:
Using ev(4) according to the definition (5) and (85) for 4D:

ρn
4/rn

4  = 8/σ 4  = ( π2

2
 (Γ - 1/4)

4)
−2

= 1.232E-7   (86)

as integration limit, with (12) the non-point-charge integral in 4D will be given by:

∫
0

r

ev (4 )r dr  ~ Γ (−1/2 , 8 /σ 4)  = ∫
8 /σ 4

∞

t−1.5e−t dt  = 5687  ≈ 16 π 4 Γ−1/2 (87)

The 4D equivalent of (84) will be:

2∫
0

r

ev (4)r−3 dr∫
0

r

ev (4)r dr  ≈ 2 [ Γ1 /2

4 ][16 π 4 Γ−1 /2

4 ]  = π2

2
Γ1 /2 Γ−1 /2  4 π2  = π3 4 π2   = αweak

−1 4 π2 (88)

The interpretation is the same as in the 3D-case:
A 4π2 term originating from the second integral of equation (88) is required for turning h2 into ħ2 since the integral refers
to ρn

2 and thus to the square of energy and h, ħ. Factor 16 cancels the corresponding factors from the Euler integrals.
The remaining factor of π2/2 is needed to yield the correct value of αweak.

2D case: 
the 2D case is not as straightforward as the 4D case. The integral over the 1D point charge  

∫
0

r

ev (2)r−1dr  = Γ (0 , ρn
2 /r2

2)  /2        (89)

features Γ(0, x), with Γ(0, x) -> ∞  for x -> 0 and m = N-2 = 0 in the equations above. Setting nevertheless m=1 in the
2D equivalent of the integration limit

ρn
2 /λC , n

2  = 8/ (σ 2)  = (30.5 π  Γ−1/2
2 )−2

 ≈ 1/ 4676      (90)

and calculating Γ(0, ρ2
2/r2

2) numerically gives ∫ev(2)r-1 dr ≈ Γ(0, ρ2
2/r2

2)/2 = 7.872/2. In the 2D case the complementary
integral would be identical to the point charge integral, giving 2(∫ev(2)r-1 dr)2 ≈ 4π3/4 = π3  , i.e. the same value as 4D,
maybe giving an alternate candidate for αweak .

That  α and  αweak are somehow related may be expected in this model.  Weak processes such as ß-decay, involving
switching of charge, would require an actual inversion of the E-field vector, i.e. something that might be described in
terms of a rotation in 5D.

[A5] Quaternion-based quark-like model 
[A5.1] Quaternion UDS-components 
In the following the model described in chpt. 4 will be explained in some more detail. A standard algorithm for rotation
with quaternions will be used. 
Three orthonormal vectors E, B, C described as imaginary part of a quaternion with real parts set to 0, will be subject to
alternate, incremental rotations around the axes E, B and C. For each E, B and C the following variables will be defined:
- de, db, dc: incremental step for rotation angle, 
- de_sum, db_sum, dc_sum: total rotation angle, 
- ex, ey, ez, bx, by, bz, cx, cy, cz: Cartesian components of the respective vectors,
- eex, eey, eez, bbx, bby, bbz, ccx, ccy, ccz: Cartesian components of the respective vectors to be buffered until rotation 
around the axes E, B and C is complete, 
- sih, qw, qx, qy, qz: internal variables for quaternion-rotation calculation.
The following part of the algorithm gives the rotation of B around the E axis for an incremental step de:
de_sum = de_sum + de;   sih = sin(de / 2);   qw = cos(de / 2);    qx = ex * sih    qy = ey * sih;    qz = ez * sih;   
bx = bbx;    by = bby;    bz = bbz;    
bxx = bx * (qx * qx + qw * qw - qy * qy - qz * qz)  + by * (2 * qx * qy - 2 * qw * qz) + bz * (2 * qx * qz + 2 * qw * qy);    
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byy = bx * (2 * qw * qz + 2 * qx * qy)   + by * (qw * qw - qx * qx + qy * qy - qz * qz) + bz * (-2 * qw * qx + 2 * qy * qz);
bzz = bx * (-2 * qw * qy + 2 * qx * qz)  + by * (2 * qw * qx + 2 * qy * qz) + bz * (qw * qw - qx * qx - qy * qy + qz * qz);  
bx = bxx;  by = byy;  bz = bzz;

Fig. 6: Flowchart quaternion calculation

This has to be followed by rotation of C around the E axis and equivalent routines for the rotation of E, B around the C 
axis and the rotation of E, C around the B axis. After each incremental step for de, db, dc the Cartesian components of 
the E, B, C vectors may be stored in a list.
The vectors are thought to indicate spatial orientation only,  polarity (sign) of E and B has to be considered in the
analysis of the results. Orientation of angular momentum remains a free parameter.
In the following only solutions where one of the incremental angles of rotation has half the value of the other two will
be considered. This may serve as a primitive model for spin S = 1/2.
There are 6 possible solutions for de, db and dv, respectively, to be called U, D, S, C, B, T:

Tab. 4: Average of x,y,z-components (E,B-comp) and total average (E,B-avg) of E-and B-field for complete rotation;
The average of the x, y, z-components of the fields are multiples of 1/9th of the original vector length, the average total
sum of E- and B-fields is 1/3 or 2/3. Surface area / fractional charge of 1/3 and 2/3 correspond to an average of the E-
field of 2/3 and 1/3.
The diagram for the E,B, C-components as function of the angle dc_sum is given in fig. 7a for a U-entity.
From a coordinate transformation to  a  representation with one Cartesian coordinate as  axis of  rotation (in  fig.  7b
transformation of  z-axis  +26,6°,  x-axis  -41,8°,  to  give  y-axis  as  axis  of  rotation)  one  can  infer  that  the E-vector
circumvents a spherical cap of area 2πr (2/3)r. Mirroring at the center of rotation gives a value of 2/3 of the surface of a
sphere, which according to Gauss’ law may represent 2/3 of a full point charge. The analogue procedure yields a value
of 1/3 of a point charge for D and S-rotations.

Fig. 7: a) E-components for Cartesian starting values  b)  E-components after coordinate transformation 

[A5.2] Magnetic moments of baryons from U, D, S-components 45

To calculate magnetic moments of uds-baryons three components of U,D,S will be combined that represent orthonormal
starting conditions for E, B. Spin/angular moment of the 3 components has to add up to SZ = 1/2. Within this model this
is not an assumption but may be calculated in principle in detail. In the following it will be sufficient to have two
components sharing the same orientation of the axis of rotation, i.e. both can be transformed according to fig. 7 above
with the same set of rotation angles, or - in a trivial case – to have 2 identical components. Together with the freedom in
choosing direction of rotation, allowing for cancelling or adding up spin as needed, this will be sufficient to model S Z =
1/2 baryons. Table 5 gives an example for UUD and DDU. 

45 Note: to allow for comparison with tabulated values of M in units of [Am2] the calculations in this chapter and in 
chpt. 4.2 use e [C] not ec  [J], conversion factor: [m2C/s ] /[m2 J/s ] = e/ec = 1/19.4 [C/J]. 
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In D_inv and U_inv the sign of E- and B-components is inverted. The D and U for calculation of the effective B-field
include  the  appropriate  sign  from  their  charge  while  U_inv,  D_inv  components  represent  the  actual  geometric
orientation of the E, B-vector only, which is needed for calculation of the angular momentum S from the square of the
electromagnetic fields. In table 5 ”Rot_X_axis” and ”Rot_Z_axis” give the angle of rotation needed to transform to a
representation with y-coordinate as axis of rotation for the B-field. For U_1 and D_inv of the proton as well as for D_2
and U_inv of the neutron the angles of transformation are identical, so is their transformed y-axis, i.e. they posses an
identical axis of spin (average of B) while still maintaining their orthonormal relationship (B(t)). Since orientation of
rotation is a free parameter opposite spin may cancel both contributions, leaving the 3 rd component’s spin of SZ = 1/2 as
total spin of the nucleon. 
The U and D components of proton / neutron have equal sign and relative value of the components of the E- and B-
fields (given in tab. 5 only for the Bx, By, Bz-components (bold) relevant for calculating a geometry-based average
value of B, B_Avg). The results for U and D are exceptional in regard to this exchangeability of U and D-components.
For other particle pairs this is difficult to assess due to identical B-field components of U and S and the different
internal symmetry of S-components compared to U and D 46. 
In  the case of  the solutions examined,  compliance with condition SZ = 1/2 for  the lambda-particle  (UDS) can be
maintained  by  using  a  spin-cancelling  UD-solution  in  combination  with  an  S-component,  for  UUS,  DDS,  USS-
combinations trivial solutions with two identical components exist, in the case of DSS, Xi -, one might resort to the
method used for the nucleons to find a SZ = 1/2 solution. Results for the best fitting appropriate UDS-combinations are
shown in tab. 6. 

Table 5: Example for appropriate combinations of U- and D-components for proton and neutron;

Table 6: Combinations of UDS-components for calculating magnetic moments of baryons.

To calculate magnetic moments, above factors of B_avg, derived from the purely geometric quaternion model, have to
be multiplied by a factor considering the absolute strength of fields. Using a simple model for a current loop, M = I*S
(current * area),  gives equ. (91) for magnetic moments of baryons with SZ = 1/2.

Mn  ≈ ec0 λC /2  *  B_avg   (= 2 πµB∗ B_avg)       (91)
see tab. 7. Factor 2π in the Bohr magneton, µB, applicable for the electron and muon, is considered to represent a degree
of rotational freedom of simple particles that more complex structures composed of several U, D, S-components might
not exhibit, requiring 2π to be cancelled.
Results  of  table  7  are  obtained  from a  large  set  of  solutions,  thus  the  statistical  significance  is  low and a  more

46 U and D are symmetric in their mutual E and B-fields while in S-components E- and B-fields are symmetric to each 
other.
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USD Lambda UUS Sigma + DDS Sigma - USS Xi 0 DSS Xi -

U U D S S
Bx, By, Bz -0.444 0.444 -0.222 -0.222 0.4444 -0.444 -0.111 -0.222 0.222 -0.222 -0.444 -0.444 0.444 -0.222 0.444

S U D S S
Bx, By, Bz 0.444 -0.444 0.222 -0.222 0.4444 -0.444 -0.111 -0.222 0.222 -0.222 -0.444 -0.444 -0.444 0.444 -0.222

D S S U D
Bx, By, Bz 0.222 0.222 0.111 0.4444 0.4444 0.222 0.444 0.444 0.222 0.444 0.444 0.222 0.222 -0.222 0.111

0.074 0.074 0.037 0.000 0.444 -0.222 0.074 0.000 0.222 0.000 -0.148 -0.222 0.074 0.000 0.111
B_Avg 0.111 0.497 0.234 0.267 0.134

Bx, By, Bz  
Avg(UUD)

UUD Proton DDU Neutron
U_1 D_1
-Ez -Bx Cy -Ex -Bz Cy

Bx, By, Bz -0.444444 0.444444 -0.222222 -0.222222 0.222222 -0.111111
E B E B

Rot_Z_axis -45 135 -45 135
Rot_X_axis 19.47 19.47 19.47 19.47

U_2 D_2
-Ex By -Cz Ey -Bx -Cz

Bx, By, Bz -0.222222 0.444444 -0.444444 -0.111111 0.222222 -0.222222
E B E B

Rot_Z_axis -26.57 116.56 -26.57 116.56
Rot_X_axis 41.82 41.81 41.82 41.81
E, B inverted D_inv U_inv

-Ey -Bz Cx -Ez -By Cx
E B E B

Rot_Z_axis -45 135 -26.57 116.56
Rot_X_axis 19.47 19.47 41.82 41.82

D U
Ey Bz Cx Ez By Cx

Bx, By, Bz 0.222222 0.222222 0.111111 0.444444 0.444444 0.222222

-0.148148 0.37037 -0.185185 0.037037 0.296296 -0.037037
B_Avg 0.439790 0.300890

Start value

Start value

Start value

Start value

Bx, By, Bz  
Avg(UUD)



comprehensive study of the appropriate combination of spin-components is needed. Control samples have been made to
check that a) in rare cases where U and D solutions do not match a UUD/DDU pair the condition for S = 1/2 is not met;
b) all U and D- components shown in the tables in combination with an S are components appearing in  UUD/DDU-
pairs as well.

Table 7:  Magnetic moments for UDS-Baryons; col.3: Compton wavelength [7]; col.4: magnetic moment for current
loop;  col.5:  average  B-component  from quaternion  calc.;  col.6:  calculated  magnetic  moments;  col.7:  values  from
experiment  [7];  col.8:  ratio  calculated  /  experiment  value;  col.9:  ratio  (calculated  constituent  quark  model,  [7])  /
experiment [7]), *calc. via Clebsch-Gordan coefficients relative to p; Σ, Ξ via fit based on p, n, Λ0.

[A5.3] Ratio of magnetic moments
The calculation of the ratio of magnetic moments is particularly simple and may be based on geometry only. In the
quaternion model both E- and B-fields are oriented to the center (magnetic monopole character on particle level) and
will feature average fields of 1/3 and 2/3 for quark-like objects. The B-field for u- and d-entities will have Cartesian
components of  ± 2/9,  ± 2/9,  ± 1/9 (d)  and  ± 4/9,  ± 4/9,  ± 2/9 (u).  Unique solutions  47 for B-field components of
nucleons will be e.g. (Bavg=((∑xi)2+(∑yi)2+(∑zi)2)0.5/3):
proton   - uud -4/9, -4/9, -2/9 / -2/9, -4/9, -4/9 / +2/9, -2/9, +1/9 Bavg = 1410.5/27 ≈ 0.440 
neutron - ddu -2/9, -2/9, -1/9 / -1/9, -2/9, -2/9 / +4/9, -4/9, +2/9 Bavg =660.5/27 ≈ 0.301
The ratio of both values is (141/66)0.5 = 1.461631, which compared to the ratio from experiments [7] gives 1.461631 /
1.459898 = 1.001187.  
These solutions are distinguished by one U and one D-component  being collinear  48,  indicating a particular stable
configuration involving oppositely charged components (see [A6]).
Table 8 compares some ratios of baryon isospin pairs for calculations with the average of the B-field as calculated in
[A5.2] with B_avg, i.e. geometry only, and with the experimental value of the Compton wavelength/particle energy. 

Table 8: Ratio of particle magnetic moments of baryon isospin pairs compared for calculated and experimental values
[7] (col.4: geometry only, B_avg; col.3 inc. experimental particle energy); 

[A6] Nucleons – stability, bonding in nuclei, scattering
Apart  from the quantitative results  for  partial  charges  and magnetic  moments  some qualitative  trends for  nucleon
properties may be inferred from the quaternion-based model.
The spin-cancelling of a UD-unit involves 2 collinear components with opposite charges occupying approximately the
same spatial area (fig. 8), which is energetically favorable. This suggests among other things:
1) Comparatively lower energy for particles with UD-component;
2) High stability / life time of the nucleons;
3) A possible contribution to bonding in nuclei via UD-U—D-UD, a direct U-D-bond even without meson intermediate;
4) If such an inter-nucleon UD-bond plays a role in bonding in nuclei this would suggest a significant change in UD-
structure between isolated and bound nucleons, which might play a role in the “EMC-effect” [18];
5) In DIS-experiments the ratio of the structure functions of neutron and proton, F 2

n(x)/F2
p(x) approaches 1 for x -> 0 (x

= Bjorken-scale) which would be in agreement with a resolution of identical E and B fields of the EBC-triple of the
nucleons rather than the averages of their U or D-units. For x -> 1 this model predicts the ratio F2

n(x)/F2
p(x) to approach

(z(UD)2 + Z(D)2)/(z(UD)2 + Z(U)2) = ((+1/3)² + (-1/3)²)/((+1/3)² + (+2/3)²) = 2/5 
which is in good agreement with high precision scattering experiments that yield values in the range 0.4 – 0.5 [19].

47 Same permutations and signs for u- and d-components; unique except for arbitrary orientation in space;
48 Time average! All E,B-components involved are orthogonal at any given point in time. 
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B_Avg
UUD 1.32E-15 3.17E-26 0.440 1.39E-26 1.41E-26 0.988 -

n DDU 1.32E-15 3.17E-26 0.301 9.55E-27 9.66E-27 0.988 0.973*
UDS 1.10E-15 2.64E-26 0.111 2.94E-27 3.10E-27 0.949 -
UUS 1.04E-15 2.50E-26 0.497 1.24E-26 1.24E-26 1.002 1.090
DDS 1.04E-15 2.50E-26 0.234 5.83E-27 5.86E-27 0.994 0.897
USS 9.43E-16 2.26E-26 0.267 6.05E-27 6.31E-27 0.958 1.152
DSS 9.38E-16 2.25E-26 0.134 3.01E-27 3.06E-27 0.983 0.784

λC e c0 *λC /2
|M|Calc =  
ec0λC Bavg/2 |M|Exp[Am2]

|M|Calc/  
|M|Exp

|M|Calc/|M|Exp 
Const. quark

p+-

Λ0

Σ+

Σ-

Ξ0

Ξ-

U,D,S-components B_avg
M(p/n)_Calc/M(p/n)_Exp UUD/DDU 0.999809 1.001187

UUS/DDS 1.007813 1.001111
USS/DSS 0.974652 0.969601

|M|Calc (λC exp)

M(Σ+/Σ-)_Calc/M(Σ+/Σ-)_Exp
M(Ξ0/Ξ-)_Calc/M(Ξ0/Ξ-)_Exp



Fig. 8: Schematic illustration of a UD-unit

Fig. 9: Ratio of nucleon structure functions (Data from [19]);
red crosses:  values according to partial charges only, at x≈1/3
according  to  U+U+D  and  D+D+U  units  (2/3),  at  x=1
according to  UD-units  (2/5);  Star  at  x=0 corresponds  to  an
identical field distribution of E and B-fields in the nucleons,
where  the  time  average  of  E  and  B  fields  resulting  in
structures such as given in fig. 3, fig. 8 will be replaced by
E(t) and B(t), both of identical strength for U and D.

[A7] Additional particle states
Assignment of more particle states will not be obvious. The following gives some possible approaches.

[A7.1] Partial products
One more partial product might be inferred from considering the next spherical harmonic, y2

0, with a factor of (2l+1)1/3

= 51/3 as energy ratio relative to η, giving the start of an additional partial product series at 5 1/3 W(η) = 937MeV i.e. close
to energy values of the first particles available as starting point, η', Φ0. However, in general it is not expected that partial
products can explain all values of particle energies.

[A7.2] Linear combinations 
Though the model reproduces basic properties of the quarks the fundamental differences might offer some alternate
interpretations based on extended, non-point-like objects. 
Linear combination states of the kaons, the first particle family that does not fit to the partial product series scheme,
(34), and the η-particle might be an example for such an interpretation:
The kaons are designated to the linear combination of (ds +/- ds)/√2 in the SM. They might be considered to be a linear
combination of 2 extended  y1

0  states (double cones of s|d,  s|d, etc., composition with 1 angular node) similar to the
linear combination of 2 atomic p-orbitals, assumed to exhibit 2 angular nodes. A linear combination which would yield
the basic symmetry properties of the 2 neutral kaons would be a planar structure such as:

        s          d
KS

o    d       s KL
o     s        s 

        d                        d
providing two neutral kaons of different structure and parity (considering either flavour or chirality), implying a decay
with different parity and lifetime.
A linear combination of 3 such states i.e. 3 orthogonal y1

0 states would imply an approximate spherical symmetric object
which might be attributable to the η-particle ((uu + dd - 2ss)/√6).

[A7.3]  Higgs boson
The considerations of chpt. 2.5.3 give the Higgs VEV as upper limit, the Higgs boson is very close to half its energy
value. The “rotating E-vector” of chpt. 4 may be interpreted to cover the whole angular range in the case of y0

0 of e.g. e
or µ, while a y1

0 object might be interpreted as forming a double cone. Increasing the number of angular nodes would
close the angle of the cone leaving in the limit l -> ∞, a state of minimal angular extension representing the original E-
vector. This may imply that essentially no space is left for rotation (i.e. Spin = 0) and a vanishing contribution of the
magnetic field to total particle energy according to (14), resulting in a factor 1/2 and giving the Higgs boson as alternate
upper limit of energy. 
With the experimental value of We this gives WHiggs-Boson ≈ We 9/8 α-2.5 = 2.025E-8 [J] (= 1.008 of experimental value);
with equ.  (33) WHiggs-Boson ≈ 2.053E-8 [J] (= 1.022 of experimental value).

[A8.1] Cosmological constant Λ from minor terms in the metric
The terms in chpt. 3.3 are related to possible terms originating from a corresponding metric of the generic type as
described in [A2] that will in general produce minor terms that might be considered as a natural candidate for e.g. the
cosmological constant term, gαβΛ0 as well. In [A2.1.2] an example is given to illustrate the emergence of typical extra
terms. These will feature the same coefficients as the series expansion and thus might give equivalent terms for Λ 0

directly  from the  EFE.  In  particular  terms  such  as  ρn
3/r5 or  ρn

6/r8 with  all  r  originating  from derivatives  of  the
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exponential only 49 will yield approximate values in the order of magnitude of critical, vacuum density, ρc, ρvac if setting
rl = ec/(4πεc) as upper bound of r.

Φ ' '
Φ

 ≈ ρ3

r l
5  ≈ ß

(ec /(4 π εc))
5 ( ec

4 π ε c )
3

= 0.089 [m-2]   (92)

Multiplied by εc this gives an energy density of 2.97E-10 [J/m3], multiplied by 8πG/c4 this gives for Λ: Λ0,calc=6.17E-
53[m-2] ≈ Λ0/1.8  50 as estimate for the  cosmological constant. Depending on the ansatz for the metric this should be
modified by a corresponding small integer as prefactor.

[A8.2] dS4 and energy density
A relationship to a de Sitter space requires a constant energy density, w(r) = const, a  condition not met for  w(r) of a
particle. However, for any dependence on a type of energy density w(r) ~ -1/rN, e.g. for the square of the electric field
E2(r): w(r) ~ -1/r4, w(r) may for a discrete value rl be decomposed in w1(r) ~ -1/(r-rl)4, and w2(r) ~ -1/rl

4 = const, with
|w1(r)|  >= |w2(r)|,  see fig.  10. This allows to separate a  constant  small  w2 term from any -1/rN term  51.  A dS4-like
component may thus be considered as a general background for any length scale.

Fig. 10: Decomposition of energy density, w(r); 
The length scale refers to a radius in 3D-space.

[A9] Numerical calculation
Example for numerical calculation with r = re (spin=1/2), rl (spin=√3/2) and rll (spin=1) as boundary condition (bold in
line 1 for r: multiplicator for r-entries, 1000 steps):

49 Such as ρ3/r5 in [A2.1] though this term cancels in the specific example for G00.
50 With Hubble constant H0 = 67.66 [km/s/Mpc]  Λ0 ≈ 1.11E-52 [m-2]; [16]
51 Notably, calculating the energy of such a dS4 for rl (or rll - factor 2/3Γ-1/3/3 cancels)  according to the boundary 
condition S= √3ħ/2 (or S=1ħ) yields ec:

W (dS4)≈ εc ( ec

4 π εc rl
2)

2

 ∫
0

r l

exp(-( ρ0
r )

3)d ³r  ≈ 3
ec

2

(4 π )2 εc rl
4

4 πrl
3

3
 ≈ ec
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Spin = 1/2 Spin = 1
π 3.14159 1,5 1,5 1

3.00E+8[m/s] r φ r φ r φ*
1.810E+08 1,00783 1,011865 1,01288

ß 4.909E-22 6.00E-16 5.96E-247 6.00E-16 5.96E-247 6.00E-16 1.11E-73

7.419E-11[m] 6.05E-16 2.95E-241 1.75E-255 2.223E-278 6.07E-16 2.17E-238 1.94E-252 2.47E-275 6.08E-16 6.20E-71 6.02E-85 7.6733E-108
2.307E-028[J/m] 6.09E-16 1.08E-235 6.36E-250 8.124E-273 6.14E-16 3.97E-230 3.51E-244 4.524E-267 6.16E-16 2.73E-68 2.62E-82 3.3837E-105

h_bar 1.055E-034[Js] 6.14E-16 2.93E-230 1.71E-244 2.207E-267 6.22E-16 3.75E-222 3.28E-236 4.276E-259 6.23E-16 9.59E-66 9.08E-80 1.1863E-102
6.19E-16 5.95E-225 3.46E-239 4.49E-262 6.29E-16 1.87E-214 1.62E-228 2.135E-251 6.32E-16 2.70E-63 2.52E-77 3.3355E-100

6.24E-16 9.13E-220 5.27E-234 6.884E-257 6.36E-16 5.04E-207 4.31E-221 5.754E-244 6.40E-16 6.13E-61 5.66E-75 7.58356E-98

6.29E-16 1.06E-214 6.08E-229 8.009E-252 6.44E-16 7.50E-200 6.34E-214 8.555E-237 6.48E-16 1.14E-58 1.04E-72 1.40547E-95

φ(r) 6.34E-16 9.43E-210 5.36E-224 7.114E-247 6.52E-16 6.28E-193 5.25E-207 7.164E-230 6.56E-16 1.73E-56 1.56E-70 2.13967E-93

φ*(r) 6.39E-16 6.44E-205 3.63E-219 4.855E-242 6.59E-16 3.02E-186 2.49E-200 3.447E-223 6.65E-16 2.18E-54 1.94E-68 2.69565E-91

6.44E-16 3.40E-200 1.90E-214 2.562E-237 6.67E-16 8.51E-180 6.95E-194 9.712E-217 6.73E-16 2.29E-52 2.01E-66 2.83056E-89

6.49E-16 1.39E-195 7.73E-210 1.051E-232 6.75E-16 1.43E-173 1.15E-187 1.633E-210 6.82E-16 2.02E-50 1.75E-64 2.49432E-87
6.54E-16 4.47E-191 2.46E-205 3.373E-228 6.83E-16 1.46E-167 1.17E-181 1.668E-204 6.91E-16 1.50E-48 1.28E-62 1.85681E-85
6.59E-16 1.13E-186 6.17E-201 8.516E-224 6.91E-16 9.23E-162 7.27E-176 1.053E-198 7.00E-16 9.49E-47 8.01E-61 1.17512E-83
1.30E-12 1.00E+00 2.76E-18 7.5426E-38 6.67E-11 1.00E+00 8.16E-20 1.1407E-37 1.79E-10 1.00E+00 3.30E-20 1.23765E-37
1.31E-12 1.00E+00 2.74E-18 7.5426E-38 6.75E-11 1.00E+00 8.07E-20 1.1407E-37 1.81E-10 1.00E+00 3.26E-20 1.23765E-37
1.32E-12 1.00E+00 2.72E-18 7.5426E-38 6.83E-11 1.00E+00 7.97E-20 1.1407E-37 1.84E-10 1.00E+00 3.22E-20 1.23765E-37
1.33E-12 1.00E+00 2.70E-18 7.5426E-38 6.91E-11 1.00E+00 7.88E-20 1.1407E-37 1.86E-10 1.00E+00 3.18E-20 1.23765E-37
1.34E-12 1.00E+00 2.68E-18 7.5426E-38 6.99E-11 1.00E+00 7.79E-20 1.1407E-37 1.88E-10 1.00E+00 3.13E-20 1.23765E-37
1.35E-12 1.00E+00 2.66E-18 7.5426E-38 7.07E-11 1.00E+00 7.70E-20 1.1407E-37 1.91E-10 1.00E+00 3.10E-20 1.23765E-37
1.36E-12 1.00E+00 2.64E-18 7.5426E-38 7.16E-11 1.00E+00 7.61E-20 1.1407E-37 1.93E-10 1.00E+00 3.06E-20 1.23765E-37
1.38E-12 1.00E+00 2.62E-18 7.5426E-38 7.24E-11 1.00E+00 7.52E-20 1.1407E-37 1.96E-10 1.00E+00 3.02E-20 1.23765E-37
1.39E-12 1.00E+00 2.60E-18 7.5426E-38 7.33E-11 1.00E+00 7.43E-20 1.1407E-37 1.98E-10 1.00E+00 2.98E-20 1.23765E-37
1.40E-12 1.00E+00 2.58E-18 7.5426E-38 7.41E-11 1.00E+00 7.34E-20 1.1407E-37 2.7 2.01E-10 1.00E+00 2.94E-20 1.23765E-37
1.41E-12 7.50E-11 2.03E-10

Sum 8.26E-14 5.27E-35 8.30E-14 9.11E-35 1.24E-13 1.047E-34
Target value 8.19E-14 5.27E-35 8.19E-14 9.13E-35 8.19E-14 1.055E-34

Ratio 1.009 1.000 1.013 0.998 1.520 0.993

Spin = √3/2 

c0 ΔW(r) ΔS(r) ΔW(r) ΔS(r) ΔW(r) ΔS(r)
σ0

ec/(4πεc)
ec2/(4πεc)

Δr '=((rn-rn-1)+(rn+1-rn))/2
ρ0 '= ec/(4πεc)

'=exp(-1.53σ0ß(ρ0/r)3)
'=exp(-σ0ß(ρ0/r)3)

ΔW(r)[J] `=2εcρ02φ(r) Δr/r2

ΔS(r)[Js] `=2πW(r)r/c0


